icrostructure and mechanical properties of Al_4C_3 and Al_2O_3 dispersion strengthened aluminum composite fabricated by mechanical attrition and hotpressing consolidation method were studied. It was shown that fine we...icrostructure and mechanical properties of Al_4C_3 and Al_2O_3 dispersion strengthened aluminum composite fabricated by mechanical attrition and hotpressing consolidation method were studied. It was shown that fine well developed Al_4C_3 stick and equiaxed γAl_2O_3 dispersoids with total content of about 6.6 v% uniformly distributed within the Al grains or along the grain boundaries. The Al/Al_4C_3 and Al/Al_2O_3 interfaces are very clean and well bonded at atomic level, but have no fixed orientation relationships between the dispersoids and the aluminum matrix exists. At ambient and especially elevated temperatures, strength and stiffness of the composite are much higher than that of P/M Al and even better than that of the 15 v% SiCw/Al composite.展开更多
B_(4)C/Al composites are widely utilized as neutron absorbing materials for the storage and transportation of spent nuclear fuel.In order to improve the high-temperature mechanical properties of B_(4)C/Al composites,i...B_(4)C/Al composites are widely utilized as neutron absorbing materials for the storage and transportation of spent nuclear fuel.In order to improve the high-temperature mechanical properties of B_(4)C/Al composites,in-situ nano-Al_(2)O_(3)was introduced utilizing oxide on Al powder surface.In this study,the Al_(2)O_(3)content was adjusted by utilizing spheroid Al powder with varying diameters,thereby investigating the impact of Al_(2)O_(3)content on the tensile properties of(B_(4)C+Al_(2)O_(3))/Al composites.It was found that the pinning effect of Al_(2)O_(3)on the grain boundaries could hinder the recovery of dislocations and lead to dislocation accumulation at high temperature.As the result,with the increase in Al_(2)O_(3)content and the decrease in grain size,the high-temperature strength of the composites increased significantly.The finest Al powder used in this investigation had a diameter of 1.4μm,whereas the resultant composite exhibited a maximum strength of 251 MPa at room temperature and 133 MPa at 350℃,surpassing that of traditional B_(4)C/Al composites.展开更多
文摘icrostructure and mechanical properties of Al_4C_3 and Al_2O_3 dispersion strengthened aluminum composite fabricated by mechanical attrition and hotpressing consolidation method were studied. It was shown that fine well developed Al_4C_3 stick and equiaxed γAl_2O_3 dispersoids with total content of about 6.6 v% uniformly distributed within the Al grains or along the grain boundaries. The Al/Al_4C_3 and Al/Al_2O_3 interfaces are very clean and well bonded at atomic level, but have no fixed orientation relationships between the dispersoids and the aluminum matrix exists. At ambient and especially elevated temperatures, strength and stiffness of the composite are much higher than that of P/M Al and even better than that of the 15 v% SiCw/Al composite.
基金supported by the National Key R&D Program of China(Grant No.2023YFB3710601)the National Natural Science Foundation of China(Grant Nos.52203385 and 52171056)+2 种基金the CNNC Science Fund for Talented Young Scholars,the Institute of Metal Research(IMR)Innovation Fund(Grant No.2021-ZD02)the Natural Science Foundation of Liaoning Province(Grant No.2022-BS-009)Young Elite Scientists Sponsorship Program by CAST(Grant No.YESS20220225).
文摘B_(4)C/Al composites are widely utilized as neutron absorbing materials for the storage and transportation of spent nuclear fuel.In order to improve the high-temperature mechanical properties of B_(4)C/Al composites,in-situ nano-Al_(2)O_(3)was introduced utilizing oxide on Al powder surface.In this study,the Al_(2)O_(3)content was adjusted by utilizing spheroid Al powder with varying diameters,thereby investigating the impact of Al_(2)O_(3)content on the tensile properties of(B_(4)C+Al_(2)O_(3))/Al composites.It was found that the pinning effect of Al_(2)O_(3)on the grain boundaries could hinder the recovery of dislocations and lead to dislocation accumulation at high temperature.As the result,with the increase in Al_(2)O_(3)content and the decrease in grain size,the high-temperature strength of the composites increased significantly.The finest Al powder used in this investigation had a diameter of 1.4μm,whereas the resultant composite exhibited a maximum strength of 251 MPa at room temperature and 133 MPa at 350℃,surpassing that of traditional B_(4)C/Al composites.