期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fluid Flow and Solidification Simulation in Beam Blank Continuous Casting Process With 3D Coupled Model 被引量:14
1
作者 YANG Jian-wei DU Yan-ping +1 位作者 SHI Rong CUI Xiao-chao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第4期17-21,共5页
Based on turbulent theory, a 3D coupled model of fluid flow and solidification was built using finite difference method and used to study the influence of superheating degree and casting speed on fluid flow and solidi... Based on turbulent theory, a 3D coupled model of fluid flow and solidification was built using finite difference method and used to study the influence of superheating degree and casting speed on fluid flow and solidification, analyze the interaction between shell and molten steel, and compare the temperature distribution under different technological conditions. The results indicate that high superheating degree can lengthen the liquid-core depth and make the crack and breakout possible, so suitable superheating should be controlled within 35℃ according to the simulation results. Casting speed which is one of the most important technological parameters of improving production rate, should be controlled between 0. 85 m/min and 1.05 m/min and the caster has great potential in the improvement of blank quality. 展开更多
关键词 beam blank continuous casting flow field temperature distribution coupled model SOLIDIFICATION
下载PDF
EFFECT OF SUBMERGED ENTRY NOZZLE (SEN) PARAMETERS AND SHAPE ON 3-D FLUID FLOW IN MOULD FOR BEAM BLANK CONTINUOUS CASTING
2
作者 Y.P.Du J.W.Yang +1 位作者 R.Shi X.C.Cui 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第5期705-712,共8页
According to turbulent theory and characteristics of beam blank continuous casting, 3-D model to represent the flow of beam blank mould is established. The predicted results indicate that the exit obliquity of up 15&#... According to turbulent theory and characteristics of beam blank continuous casting, 3-D model to represent the flow of beam blank mould is established. The predicted results indicate that the exit obliquity of up 15°(+15°) should be adopted, which will benefit the floatation of non-metallic inclusion and purification of the molten steel. When the nozzle angle is 120°, the flow pattern is reasonable. Proper nozzle depth can be 200mm. Turbulent kinetic of meniscus can be reduced by adopting the square nozzle and suitable area of side outlet when casting speed increases. The results are consistent with those of water model experiment, so the model is exact and reasonable. The model can provide important information for design of SEN and defining of immersion depth. 展开更多
关键词 SEN parameter SEN shape beam blank continuous casting 3-D flow distribution turbulent kinetic energy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部