In the continuous casting production of medium carbon steel (whose mass fraction of carbon is 0.09 % to 0.16 %) and high strength low alloy steel (whose mass fraction of Mn is 0.90 % to 1.40 %), flecks occurring the m...In the continuous casting production of medium carbon steel (whose mass fraction of carbon is 0.09 % to 0.16 %) and high strength low alloy steel (whose mass fraction of Mn is 0.90 % to 1.40 %), flecks occurring the most often are usually longitudinal and star cracks. In additional to the employment of a galvanized plate mould, two kinds of fluxes with special properties were studied and used to harmonize the conflicts between the function of heat transfer and lubrication. An industrial application revealed that the crystallizing temperature (Tc) and crystal ratio (R) of fluxes have a crucible effect on impeding the occurrence of above defects on a slab surface. In the case of slab section (180 to 240) mm(1000 to 1400) mm and casting speed Vc of (0.7 to 1.2) m/min, the optimized parameters of fluxes are Tc of (1170 to 1190) ℃, R of 80 % to 95 % for medium carbon steel, and Tc of (1100 to 1150) ℃, plus R of 40 % to 60 % for high strength low alloy steel.展开更多
During continuous casting of steel, the properties of mold fluxes strongly affect the casting performance, steel quality and environment of casting operation. The high temperature microscopy technique was used to inve...During continuous casting of steel, the properties of mold fluxes strongly affect the casting performance, steel quality and environment of casting operation. The high temperature microscopy technique was used to investigate the melting behaviour of mold fluxes, and drip test method was used to determine their melting rate. The results showed that free carbon is a dominant factor in governing the melting behaviour of fluxes, and the melting rate is increased with increasing carbon reactivity and decreasing carbon content.展开更多
In modern continuous casting of round steel blooms rotating electromagnetic fields are commonly employed to improve the product quality.Mould-electromagnetic stirrers(M-EMS)are used to excite a rotary motion along the...In modern continuous casting of round steel blooms rotating electromagnetic fields are commonly employed to improve the product quality.Mould-electromagnetic stirrers(M-EMS)are used to excite a rotary motion along the solidification front in the liquid core.These velocities lead to a better strand surface quality as well as enhancing the transition from columnar to equiaxed solidification.Although the usage of electromagnetic stirrers is widespread,not all effects are fully known or understood.Due to harsh conditions at the plant,measurements are scarce and limited.Water model experiments-an established alternative for investigating continuous casting of steel-cannot be used due to the low electrical conductivity of water.Experiments with liquid metals like mercury,Galinstan or Wood’s metal are either expensive or difficult to perform.Thus numeric simulations are essential to gain a better understanding of the processes involved in continuous casting with electromagnetic stirring.However numeric simulations should always be validated with experiments and/or measurements.While the velocity field inside the liquid core of the bloom cannot be measured at the caster,the velocity at the mould level can be measured by dipping a nail into it.The skull forming at the tip of the nail is directly linked to the occurring surface velocity.These measurements can then be compared with numeric simulations of the nail dipping process.The numeric model is restricted to the upper part of the strand.The lower part of the strand is also taken into account through adjusted boundary conditions(velocity field etc.taken from a simulation of the whole strand).In this work the influence of the stirring field strength on the simulation results will be investigated.In the future these nail dipping simulations will be validated with plant measurements.This can then to a certain extentvalidate the simulation of the strand with M-EMS too,as it serves as the basis for the nail dipping model.展开更多
Strategies based on thermodynamic calculations can be used to overcome the problems associated with oxides encountered in steel plant operations, which can lead to certain difficulties in the process such as clogging ...Strategies based on thermodynamic calculations can be used to overcome the problems associated with oxides encountered in steel plant operations, which can lead to certain difficulties in the process such as clogging of submerged entry nozzle during continuous casting. Approaches to producing high alloy steels by continuous casting have been taken. One of the strategies to avoid the oxidation of chromium is to add a small amount of other elements (subject to other constraints), which do not cause subsequent problems. The problem has been studied using the Thermo-CalcR software, with related databases; and the results obtained for different process conditions or generic compositions have been presented.展开更多
In order to solve the problem of the high surface longitudinal crack ratio of heavy peritectic steel slabs produced by the No. 3 continuous caster at Baosteel,the physical properties of the original mold flux and the ...In order to solve the problem of the high surface longitudinal crack ratio of heavy peritectic steel slabs produced by the No. 3 continuous caster at Baosteel,the physical properties of the original mold flux and the optimized mold flux were compared in a comprehensive way by using analytical measures, such as a slag film heat-flow simulator, a thermowire molten flux crystallization tester and an X-ray diffractometer in the laboratory. The results reveal that one of the major reasons for the cracks is the poor heat transfer ability of the original mold flux. However, the optimized mold flux with a high basicity features a high crystallizing rate,low crystallization temperature and low heat-flow density. Therefore, the optimized mold flux is more suitable for casting peritectic steel by the heavy slab continuous caster. The test results show that the slabs produced by using the optimized mold flux had no surface longitudinal crack in four test casts, while the surface longitudinal crack ratio of the slabs produced by using the original mold flux was 5%. The optimized mold flux can effectively prevent slab surface longitudinal cracks from occurring.展开更多
The present work investigated the solidification microstructure of AISI M2 high speed steel manufactured by different casting technologies, namely iron mould casting and continuous casting. The results revealed that t...The present work investigated the solidification microstructure of AISI M2 high speed steel manufactured by different casting technologies, namely iron mould casting and continuous casting. The results revealed that the as-cast structure of the steel was composed of the iron matrix and the M2C eutectic carbide networks, which were greatly refined in the ingot made by continuous casting process, compared with that by the iron mould casting process. M2C eutectic carbides presented variation in their morphologies and growth characteristics in the ingots by both casting methods. In the ingot by iron mould casting, they have a plate-like morphology and grow anisotropically. However, in the ingot made by continuous casting, the carbides evolved into the fiber-like shape that exhibited little characteristics of anisotropic growth. It was noticed that the fiber-like M2C was much easier to decompose and spheroidize after heated, as a result, the carbides refined remarkably, compared with the case of plate-like carbides in the iron mould casting ingot.展开更多
文摘In the continuous casting production of medium carbon steel (whose mass fraction of carbon is 0.09 % to 0.16 %) and high strength low alloy steel (whose mass fraction of Mn is 0.90 % to 1.40 %), flecks occurring the most often are usually longitudinal and star cracks. In additional to the employment of a galvanized plate mould, two kinds of fluxes with special properties were studied and used to harmonize the conflicts between the function of heat transfer and lubrication. An industrial application revealed that the crystallizing temperature (Tc) and crystal ratio (R) of fluxes have a crucible effect on impeding the occurrence of above defects on a slab surface. In the case of slab section (180 to 240) mm(1000 to 1400) mm and casting speed Vc of (0.7 to 1.2) m/min, the optimized parameters of fluxes are Tc of (1170 to 1190) ℃, R of 80 % to 95 % for medium carbon steel, and Tc of (1100 to 1150) ℃, plus R of 40 % to 60 % for high strength low alloy steel.
文摘During continuous casting of steel, the properties of mold fluxes strongly affect the casting performance, steel quality and environment of casting operation. The high temperature microscopy technique was used to investigate the melting behaviour of mold fluxes, and drip test method was used to determine their melting rate. The results showed that free carbon is a dominant factor in governing the melting behaviour of fluxes, and the melting rate is increased with increasing carbon reactivity and decreasing carbon content.
基金Item Sponsored by Austrian competence centre programme COMET by the BMVITby the BMWFJ+1 种基金by the provinces of Upper Austria,Styria and Tyrolby the SFG and by the Tiroler Zukunftsstiftung
文摘In modern continuous casting of round steel blooms rotating electromagnetic fields are commonly employed to improve the product quality.Mould-electromagnetic stirrers(M-EMS)are used to excite a rotary motion along the solidification front in the liquid core.These velocities lead to a better strand surface quality as well as enhancing the transition from columnar to equiaxed solidification.Although the usage of electromagnetic stirrers is widespread,not all effects are fully known or understood.Due to harsh conditions at the plant,measurements are scarce and limited.Water model experiments-an established alternative for investigating continuous casting of steel-cannot be used due to the low electrical conductivity of water.Experiments with liquid metals like mercury,Galinstan or Wood’s metal are either expensive or difficult to perform.Thus numeric simulations are essential to gain a better understanding of the processes involved in continuous casting with electromagnetic stirring.However numeric simulations should always be validated with experiments and/or measurements.While the velocity field inside the liquid core of the bloom cannot be measured at the caster,the velocity at the mould level can be measured by dipping a nail into it.The skull forming at the tip of the nail is directly linked to the occurring surface velocity.These measurements can then be compared with numeric simulations of the nail dipping process.The numeric model is restricted to the upper part of the strand.The lower part of the strand is also taken into account through adjusted boundary conditions(velocity field etc.taken from a simulation of the whole strand).In this work the influence of the stirring field strength on the simulation results will be investigated.In the future these nail dipping simulations will be validated with plant measurements.This can then to a certain extentvalidate the simulation of the strand with M-EMS too,as it serves as the basis for the nail dipping model.
文摘Strategies based on thermodynamic calculations can be used to overcome the problems associated with oxides encountered in steel plant operations, which can lead to certain difficulties in the process such as clogging of submerged entry nozzle during continuous casting. Approaches to producing high alloy steels by continuous casting have been taken. One of the strategies to avoid the oxidation of chromium is to add a small amount of other elements (subject to other constraints), which do not cause subsequent problems. The problem has been studied using the Thermo-CalcR software, with related databases; and the results obtained for different process conditions or generic compositions have been presented.
文摘In order to solve the problem of the high surface longitudinal crack ratio of heavy peritectic steel slabs produced by the No. 3 continuous caster at Baosteel,the physical properties of the original mold flux and the optimized mold flux were compared in a comprehensive way by using analytical measures, such as a slag film heat-flow simulator, a thermowire molten flux crystallization tester and an X-ray diffractometer in the laboratory. The results reveal that one of the major reasons for the cracks is the poor heat transfer ability of the original mold flux. However, the optimized mold flux with a high basicity features a high crystallizing rate,low crystallization temperature and low heat-flow density. Therefore, the optimized mold flux is more suitable for casting peritectic steel by the heavy slab continuous caster. The test results show that the slabs produced by using the optimized mold flux had no surface longitudinal crack in four test casts, while the surface longitudinal crack ratio of the slabs produced by using the original mold flux was 5%. The optimized mold flux can effectively prevent slab surface longitudinal cracks from occurring.
基金supported by the Fund Project for Transformation of Scientific and Technological Achievements of Jiangsu Province,China(No.BA2010139)
文摘The present work investigated the solidification microstructure of AISI M2 high speed steel manufactured by different casting technologies, namely iron mould casting and continuous casting. The results revealed that the as-cast structure of the steel was composed of the iron matrix and the M2C eutectic carbide networks, which were greatly refined in the ingot made by continuous casting process, compared with that by the iron mould casting process. M2C eutectic carbides presented variation in their morphologies and growth characteristics in the ingots by both casting methods. In the ingot by iron mould casting, they have a plate-like morphology and grow anisotropically. However, in the ingot made by continuous casting, the carbides evolved into the fiber-like shape that exhibited little characteristics of anisotropic growth. It was noticed that the fiber-like M2C was much easier to decompose and spheroidize after heated, as a result, the carbides refined remarkably, compared with the case of plate-like carbides in the iron mould casting ingot.