Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer eff...Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.展开更多
Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly fou...Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly found in diabetic patients with DKD and especially ESKD,as a result of impaired renal metabolism.It is essential to monitor glycemia for effective management of DKD.Hemoglobin A1c(HbA1c)has long been considered as the gold standard for monitoring glycemia for>3 months.However,assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction.Continuous glucose monitoring(CGM)has provided new insights on glycemic assessment and management.CGM directly measures glucose level in interstitial fluid,reports real-time or retrospective glucose concentration,and provides multiple glycemic metrics.It avoids the pitfalls of HbA1c in some contexts,and may serve as a precise alternative to estimation of mean glucose and glycemic variability.Emerging studies have demonstrated the merits of CGM for precise monitoring,which allows fine-tuning of glycemic management in diabetic patients.Therefore,CGM technology has the potential for better glycemic monitoring in DKD patients.More research is needed to explore its application and management in different stages of DKD,including hemodialysis,peritoneal dialysis and kidney transplantation.展开更多
BACKGROUND There are relatively few studies on continuing care of coronary heart disease(CHD),and its research value needs to be further clarified.AIM To investigate the effect of continuous nursing on treatment compl...BACKGROUND There are relatively few studies on continuing care of coronary heart disease(CHD),and its research value needs to be further clarified.AIM To investigate the effect of continuous nursing on treatment compliance and side effect management in patients with CHD.METHODS This is a retrospective study with patients from January 2021 to 2023.The study was divided into two groups with 30 participants in each group.Self-rating anxiety scale(SAS)and Self-rating depression scale(SDS)were used to assess patients'anxiety and depression,and medical coping questionnaire was used to assess patients'coping styles.The pelvic floor dysfunction questionnaire(PFDI-20)was used to assess the status of pelvic floor function,including bladder symptoms,intestinal symptoms,and pelvic symptoms.RESULTS SAS score decreased from 57.33±3.01before treatment to 41.33±3.42 after treatment,SDS score decreased from 50.40±1.45 to 39.47±1.57.The decrease of these two indexes was statistically significant(P<0.05).PFDI-20 scores decreased from the mean 16.83±1.72 before treatment to 10.47±1.3the mean after treatment,which was statistically significant(P<0.05).CONCLUSION The results of this study indicate that pioneering research in continuous care of CHD has a positive impact on improving patients'treatment compliance,reducing anxiety and depression levels,and improving coping styles and pelvic floor functional status.展开更多
This paper is a report of a 34-year-old man with chronic renal failure undergoing Continuous Ambulatory Peritoneal Dialysis which developed peritonitis due to Geotricum candidum. The diagnosis was established by cultu...This paper is a report of a 34-year-old man with chronic renal failure undergoing Continuous Ambulatory Peritoneal Dialysis which developed peritonitis due to Geotricum candidum. The diagnosis was established by culture of dialysis fluid. The purpose of this report is to provide data on a fungal peritonitis due to a non-common agent.展开更多
This paper provided an effective method to further improve the mechanical properties of the AZ80+0.4%Ce magnesium alloy wheel spoke.The effect of high strength and ductility was obtained with a yield strength of 295.3...This paper provided an effective method to further improve the mechanical properties of the AZ80+0.4%Ce magnesium alloy wheel spoke.The effect of high strength and ductility was obtained with a yield strength of 295.36 MPa,an elongation of 10%,by the combination of pre-deformation(7%deformation)and two-stage aging treatment(120℃/9 h+175℃/24 h).The evolution of the microstructure and properties of the alloy was explored under the coupling conditions of different pre-deformation degrees and multi-stage aging.The results show that,pre-deformation introduced a large number of(1012)tensile twinning and dislocations,which greatly promoted the probability of continuous precipitates(CPs)appearing.On the contrary,the discontinuous precipitates(DPs)were limited by the vertical and horizontal twin structure.As a result,the pre-nucleation method of two-stage aging increased the proportion of CPs by 34%-38%.Owing to the DPs was effectively suppressed,the alloy's yield strength has been greatly improved.Besides,under multi-stage aging,the twin boundaries induce protruding nucleation to form static recrystallization by hindering the migration of dislocations,and the matrix swallows the twins,then the texture gradually tilts from the two poles to the basal plane.As an important supplement,the grain refinement and oblique texture promoted the improvement of the yield strength of the component.展开更多
Dynamic control is essential to guarantee the stable performance of continuous chromatography.AutoMAb dynamic control strategy has been developed to ensure a consistent protein load in twincolumn CaptureSMB continuous...Dynamic control is essential to guarantee the stable performance of continuous chromatography.AutoMAb dynamic control strategy has been developed to ensure a consistent protein load in twincolumn CaptureSMB continuous capture by integrating the UV signal of breakthrough.In this study,the process risk of CaptureSMB continuous capture under AutoMAb control towards the feedstock variations was assessed by a mechanistic model developed by us.The effects of target protein and impurities under the variation range of±10 mAU·min^(-1) on load amount,protein loss,process productivity,and resin capacity utilization were investigated.The results showed that the CaptureSMB process could be successfully controlled by AutoMAb towards increased or slightly decreased concentration of feedstock.However,the load process would be out of control with drastically decreased target protein or impurities,and the decreased impurities would lead to protein loss.It was found that AutoMAb control would cause 44.7%non-operational areas and 18.3%protein loss areas in the variation range of±10 mAU·min^(-1).To improve the stability of the CaptureSMB process,a modified AutoMAb control that would stop the load procedure when the absolute value of the integral area reached the preset value,was proposed to reduce the risk of protein loss and the non-operational area.展开更多
Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that ...Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that is capable of continuously interrogating the DC signal over many DD cycles.We illustrate its efficacy when applied to the measurement of a weak DC magnetic field with an atomic spinor Bose-Einstein condensate.Sensitivities approaching standard quantum limit or Heisenberg limit are potentially realizable for a coherent spin state or a squeezed spin state of 10000 atoms,respectively,while ambient laboratory level noise is suppressed by DD.Our work offers a practical approach to mitigate the limitations of DD to DC measurement and would find other applications for resorting coherence in quantum sensing and quantum information processing research.展开更多
In order to predict the damage behaviours of 3D-printed continuous carbon fibre(CCF)reinforced composites,when additional short carbon fibre(SCF)composite components are employed for continuous printing or special fun...In order to predict the damage behaviours of 3D-printed continuous carbon fibre(CCF)reinforced composites,when additional short carbon fibre(SCF)composite components are employed for continuous printing or special functionality,a novel path-dependent progressive failure(PDPF)numerical approach is developed.First,a progressive failure model using Hashin failure criteria with continuum damage mechanics to account for the damage initiation and evaluation of 3D-printed CCF reinforced polyamide(PA)composites is developed,based on actual fibre placement trajectories with physical measurements of 3D-printed CCF/PA constituents.Meanwhile,an elastic-plastic model is employed to predict the plastic damage behaviours of SCF/PA parts.Then,the accuracy of the PDPF model was validated so as to study 3D-printed CCF/PA composites with either negative Poisson's ratio or high stiffness.The results demonstrate that the proposed PDPF model can achieve higher prediction accuracies in mechanical properties of these 3D-printed CCF/PA composites.Mechanism analyses show that the stress distribution is generally aggregated in the CCF areas along the fibre placement paths,and the shear damage and matrix tensile/compressive damage are the key damage modes.This study provides a new approach with valuable information for characterising complex 3D-printed continuous fibre-matrix composites with variable mechanical properties and multiple constituents.展开更多
Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the ...Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the high-efficiency continuous casting of steels.The application of mold thermal monitoring(MTM) systems,which use thermocouples to detect and respond to temperature variations in molds,has become an effective method to address irregular initial solidification phenomena.Such systems are widely applied in numerous steel companies for sticker breakout prediction.However,monitoring the surface defects of strands remains immature.Hence,indepth research is necessary to utilize the potential advantages and comprehensive monitoring of MTM systems.This paper summarizes what is included in the irregular initial solidification phenomena and systematically reviews the current state of research on these phenomena by the MTM systems.Furthermore,the influences of mold slag behavior on monitoring these phenomena are analyzed.Finally,the remaining problems of the formation mechanisms and investigations of irregular initial solidification phenomena are discussed,and future research directions are proposed.展开更多
We demonstrate,for the first time and to the best of our knowledge,a continuous-wave and broadly tunable Cr:ZnSe bulk crystal laser pumped by a Tm:YLF bulk laser with 1845 nm and 1887 nm wavelengths.We compare the out...We demonstrate,for the first time and to the best of our knowledge,a continuous-wave and broadly tunable Cr:ZnSe bulk crystal laser pumped by a Tm:YLF bulk laser with 1845 nm and 1887 nm wavelengths.We compare the output characteristics and wavelength-tuning properties of the continuous-wave operation at the two pump wavelengths.In the continuous-wave operation,the maximum output power is 1.79 W with a slope efficiency of 28.8%,which is achieved at the pump wavelength of 1887 nm.In addition,a tuning range of~700 nm(696 nm)from 2040 nm to 2736 nm by using a reflective diffraction grating is realized.To the best of our knowledge,this is the widest tuning range realized so far for Cr:ZnSe bulk crystal tuned by gratings.展开更多
The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the ...The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.展开更多
Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain an...Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain and potential tissue inflammation,and the presence of reactive oxygen species(ROS)due to inflammationmay affect glucose detection.Microneedle technology is less invasive,yet microneedle adhesion with skin tissue is limited.In this work,we developed a microarrow sensor array(MASA),which provided enhanced skin surface adhesion and enabled simultaneous detection of glucose and H_(2)O_(2)(representative of ROS)in interstitial fluid in vivo.The microarrows fabricated via laser micromachining were modified with functional coating and integrated into a patch of a three-dimensional(3D)microneedle array.Due to the arrow tip mechanically interlocking with the tissue,the microarrow array could better adhere to the skin surface after penetration into skin.The MASA was demonstrated to provide continuous in vivo monitoring of glucose and H_(2)O_(2) concentrations,with the detection of H_(2)O_(2) providing a valuable reference for assessing the inflammation state.Finally,the MASA was integrated into a monitoring system using custom circuitry.This work provides a promising tool for the stable and reliable monitoring of blood glucose in diabetic patients.展开更多
The immerging three dimensional(3D) metal-organic framework(MOF)-reinforced composite solid-state electrolytes have attracted great interest because of the enhanced ionic conductivity and mechanical properties. Howeve...The immerging three dimensional(3D) metal-organic framework(MOF)-reinforced composite solid-state electrolytes have attracted great interest because of the enhanced ionic conductivity and mechanical properties. However, the defective spatial arrangement of MOFs restricted by fabrication methodology leads to insufficient lithium ion transport in electrolytes. Herein, a 3D interconnected MOF framework tailored for all-solid-state electrolytes is rationally designed by a universal polydopamine(PDA)-engineered "double-sided tape" strategy. The PDA serves as a double-sided tape, firmly adhering on the special single-layer Nylon grid as well as offering uniform nucleation sites to anchor the metal nodes to ensure continuous growth of well-ordered MOFs. Benefiting from the Lewis acid feature of MOFs and its cage effect toward TFSI^(-), a fast and homogeneous lithium ion transport can be achieved through the internal channels within neighboring MOFs and the continuous MOFs/polymer interfaces both along the short-range circumferential boundary of Nylon fiber. The resultant composite electrolytes exhibit high lithium ion conductivity and prominent mechanical properties, rendering excellent cyclic stability whether used in coin or pouch cells. This work demonstrates a widely applicable "double-sided tape"strategy for controllable spatial arrangement of MOF nanoparticles on optional substrates, which provides a scalable approach to rationally construct desired lithium ion pathways within composite electrolytes.展开更多
This article introduces a high-power microwave mechanical integrated continuous mining device,which can achieve synchronous cutting of hard rocks by microwave and machinery.The device includes a cutting system,a rotar...This article introduces a high-power microwave mechanical integrated continuous mining device,which can achieve synchronous cutting of hard rocks by microwave and machinery.The device includes a cutting system,a rotary translation system,a loading system,a high-power microwave system,and a control and monitoring system.The technology of“master-slave follow-up”disc cutter alternating side cutting of rock was proposed,which could improve the effectiveness of rock breaking.The integrated structure of a microwave-cut system was then proposed,and synchronous motion of the microwave-cut system and adjustment of the loading system could be realized.The automatic adjustment technology of the microwave working distance was developed to dynamically control the optimal microwave working distance.The basic functions of the equipment were verified by tests.By comparing the two types of disk cutters,it is found that the master-slave follow-up disk cutter can improve significantly the dust removal effect and rock breaking efficiency in rock breaking process versus the conventional large disc cutter.Cutting tests of slate with or without microwave were conducted using a master-slave follow-up disk cutter.The results show that the cutting patterns of slates change from intermittent chunks(without microwave irradiation)to persistent debris(with microwave irradiation),and the cutting speed is significantly improved(170%).The development of the device provides a scientific basis for changing the conventional mining technology of metal mines and realizing the mechanical continuous mining in hard metal mines.展开更多
The security performance of cloud services is a key factor influencing users’selection of Cloud Service Providers(CSPs).Continuous monitoring of the security status of cloud services is critical.However,existing rese...The security performance of cloud services is a key factor influencing users’selection of Cloud Service Providers(CSPs).Continuous monitoring of the security status of cloud services is critical.However,existing research lacks a practical framework for such ongoing monitoring.To address this gap,this paper proposes the first NonCollaborative Container-Based Cloud Service Operation State Continuous Monitoring Framework(NCCMF),based on relevant standards.NCCMF operates without the CSP’s collaboration by:1)establishing a scalable supervisory index system through the identification of security responsibilities for each role,and 2)designing a Continuous Metrics Supervision Protocol(CMA)to automate the negotiation of supervisory metrics.The framework also outlines the supervision process for cloud services across different deployment models.Experimental results demonstrate that NCCMF effectively monitors the operational state of two real-world IoT(Internet of Things)cloud services,with an average supervision error of less than 15%.展开更多
Ti_(2)AlNb-based alloy was joined in a continuous drive friction welding machine under different rotational rates(500,1000 and 1500 r/min).The microstructure and mechanical properties of the joints were investigated.I...Ti_(2)AlNb-based alloy was joined in a continuous drive friction welding machine under different rotational rates(500,1000 and 1500 r/min).The microstructure and mechanical properties of the joints were investigated.It is shown that the weld zone(WZ) is fully composed of recrystallized B2 phase,and the grain size decreases with increasing rotational rate.The thermo-mechanically affected zone(TMAZ) suffers severe deformation during welding,due to which most of original precipitation phase is dissolved and streamlines are present.In the heat affected zone(HAZ),only the fine O phase is dissolved.The as-welded joint produced using 1000 r/min has the best mechanical properties,whose strength and elongation are both close to those of the base metal,while the as-welded joint obtained using 500 r/min exhibits the worst mechanical properties.Post-weld annealing treatment annihilates the deformation microstructure and fine O phase precipitates in the joints,consequently improving the mechanical properties significantly.Decomposed α_(2) phase is a weakness for the mechanical performance of the joint since microcracks are apt to form in it in the tensile test.展开更多
In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propos...In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propose a multi-ring discrete modulation continuous variable quantum key sharing scheme(MR-DM-CVQSS). In this paper, we primarily compare single-ring and multi-ring M-symbol amplitude and phase-shift keying modulations. We analyze their asymptotic key rates against collective attacks and consider the security key rates under finite-size effects. Leveraging the characteristics of discrete modulation, we improve the quantum secret sharing scheme. Non-dealer participants only require simple phase shifters to complete quantum secret sharing. We also provide the general design of the MR-DM-CVQSS protocol.We conduct a comprehensive analysis of the improved protocol's performance, confirming that the enhancement through multi-ring M-PSK allows for longer-distance quantum key distribution. Additionally, it reduces the deployment complexity of the system, thereby increasing the practical value.展开更多
In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of...In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of DAAF from synthesis to spherical coating was designed and established in this paper, which combined ultrasonic micromixing reaction with microdroplet globular template. In the rapid micromixing stage, the microfluidic mixing technology with ultrasonic was used to synergistically strengthen the uniform and rapid mass transfer mixing reaction between raw materials to ensure the uniformity of DAAF particle nucleation-growth, and to prepare high-quality DAAF crystals with uniform structure and morphology and concentrated particle size distribution. In the microdroplet globular template stage, the microfluidic droplet technology was used to form a droplet globular template with uniform size under the shear action of the continuous phase of the dispersed phase solution containing DAAF particles and binder. The size of the droplet template was controlled by adjusting the flow rate ratio between the continuous phase and the dispersed phase. In the droplet globular template, with the diffusion of the solvent in the dispersed phase droplets, the binder precipitates to coat the DAAF into a ball, forming a DAAF microsphere with high sphericity, narrow particle size distribution and good monodispersity. The problem of discontinuity and DAAF particle suspension in the process was solved, and the coating theory under this process was studied. DAAF was coated with different binder formulations of fluororubber(F2604), nitrocellulose(NC) and NC/glycidyl azide polymer(GAP), and the process verification and evaluation of the system were carried out. The balling effects of large, medium and small droplet templates under different binder formulations were studied. The scanning electron microscope(SEM) results show that the three droplet templates under the three binder formulations exhibit good balling effect and narrow particle size distribution. The DAAF microspheres were characterized by powder X-ray diffraction(XRD), differential scanning calorimetry(DSC), thermo-gravimetric(TG) and sensitivity analyzer. The results showed that the crystal structure of DAAF did not change during the process, and the prepared DAAF microspheres had lower decomposition temperature and lower mechanical sensitivity than raw DAAF. The results of detonation parameters show that the coating of DAAF by using the above three binder formulations will not greatly reduce the energy output of DAAF, and has comparable detonation performance to raw DAAF. This study proves an efficient and safe continuous system from synthesis to spherical coating modification of explosives, which provides a new way for the continuous, safe and efficient preparation of spherical explosives.展开更多
This paper is mainly about the spectral properties of a class of Jacobi operators(H_(c,b)u)(n)=c_(n)u(n+1)+c_(n-1)u(n-1)+b_(n)u(n),.where∣c_(n)−1∣=O(n^(−α))and b_(n)=O(n^(−1)).We will show that,forα≥1,the singula...This paper is mainly about the spectral properties of a class of Jacobi operators(H_(c,b)u)(n)=c_(n)u(n+1)+c_(n-1)u(n-1)+b_(n)u(n),.where∣c_(n)−1∣=O(n^(−α))and b_(n)=O(n^(−1)).We will show that,forα≥1,the singular continuous spectrum of the operator is empty.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52130303,52327802,52303101,52173078,51973158)the China Postdoctoral Science Foundation(2023M732579)+2 种基金Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001)National Key R&D Program of China(No.2022YFB3805702)Joint Funds of Ministry of Education(8091B032218).
文摘Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.
基金Supported by Natural Science Foundation of Zhejiang Province,No.LY23H050005and Zhejiang Medical Technology Project,No.2022RC009.
文摘Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly found in diabetic patients with DKD and especially ESKD,as a result of impaired renal metabolism.It is essential to monitor glycemia for effective management of DKD.Hemoglobin A1c(HbA1c)has long been considered as the gold standard for monitoring glycemia for>3 months.However,assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction.Continuous glucose monitoring(CGM)has provided new insights on glycemic assessment and management.CGM directly measures glucose level in interstitial fluid,reports real-time or retrospective glucose concentration,and provides multiple glycemic metrics.It avoids the pitfalls of HbA1c in some contexts,and may serve as a precise alternative to estimation of mean glucose and glycemic variability.Emerging studies have demonstrated the merits of CGM for precise monitoring,which allows fine-tuning of glycemic management in diabetic patients.Therefore,CGM technology has the potential for better glycemic monitoring in DKD patients.More research is needed to explore its application and management in different stages of DKD,including hemodialysis,peritoneal dialysis and kidney transplantation.
文摘BACKGROUND There are relatively few studies on continuing care of coronary heart disease(CHD),and its research value needs to be further clarified.AIM To investigate the effect of continuous nursing on treatment compliance and side effect management in patients with CHD.METHODS This is a retrospective study with patients from January 2021 to 2023.The study was divided into two groups with 30 participants in each group.Self-rating anxiety scale(SAS)and Self-rating depression scale(SDS)were used to assess patients'anxiety and depression,and medical coping questionnaire was used to assess patients'coping styles.The pelvic floor dysfunction questionnaire(PFDI-20)was used to assess the status of pelvic floor function,including bladder symptoms,intestinal symptoms,and pelvic symptoms.RESULTS SAS score decreased from 57.33±3.01before treatment to 41.33±3.42 after treatment,SDS score decreased from 50.40±1.45 to 39.47±1.57.The decrease of these two indexes was statistically significant(P<0.05).PFDI-20 scores decreased from the mean 16.83±1.72 before treatment to 10.47±1.3the mean after treatment,which was statistically significant(P<0.05).CONCLUSION The results of this study indicate that pioneering research in continuous care of CHD has a positive impact on improving patients'treatment compliance,reducing anxiety and depression levels,and improving coping styles and pelvic floor functional status.
文摘This paper is a report of a 34-year-old man with chronic renal failure undergoing Continuous Ambulatory Peritoneal Dialysis which developed peritonitis due to Geotricum candidum. The diagnosis was established by culture of dialysis fluid. The purpose of this report is to provide data on a fungal peritonitis due to a non-common agent.
基金the financial supports from Program for the Supported by the Innovative Talents Support Program of Higher Education Institutions in Shanxi Provincethe‘Shanxi Province’s Key Core Technology and Common Technology Research And Development Special Project’(2020XXX015)Special Project for Scientific and Technological Cooperation and Exchange in Shanxi Province(regional cooperation project):Key Technologies for flexible manufacturing of high-strength heat-resistant magnesium alloy cabin components(202104041101033)。
文摘This paper provided an effective method to further improve the mechanical properties of the AZ80+0.4%Ce magnesium alloy wheel spoke.The effect of high strength and ductility was obtained with a yield strength of 295.36 MPa,an elongation of 10%,by the combination of pre-deformation(7%deformation)and two-stage aging treatment(120℃/9 h+175℃/24 h).The evolution of the microstructure and properties of the alloy was explored under the coupling conditions of different pre-deformation degrees and multi-stage aging.The results show that,pre-deformation introduced a large number of(1012)tensile twinning and dislocations,which greatly promoted the probability of continuous precipitates(CPs)appearing.On the contrary,the discontinuous precipitates(DPs)were limited by the vertical and horizontal twin structure.As a result,the pre-nucleation method of two-stage aging increased the proportion of CPs by 34%-38%.Owing to the DPs was effectively suppressed,the alloy's yield strength has been greatly improved.Besides,under multi-stage aging,the twin boundaries induce protruding nucleation to form static recrystallization by hindering the migration of dislocations,and the matrix swallows the twins,then the texture gradually tilts from the two poles to the basal plane.As an important supplement,the grain refinement and oblique texture promoted the improvement of the yield strength of the component.
基金supported by the Zhejiang Key Science and Technology Project(2023C03116)National Natural Science Foundation of China(22078286)National Key Research and Development Program of China(2021YFE0113300).
文摘Dynamic control is essential to guarantee the stable performance of continuous chromatography.AutoMAb dynamic control strategy has been developed to ensure a consistent protein load in twincolumn CaptureSMB continuous capture by integrating the UV signal of breakthrough.In this study,the process risk of CaptureSMB continuous capture under AutoMAb control towards the feedstock variations was assessed by a mechanistic model developed by us.The effects of target protein and impurities under the variation range of±10 mAU·min^(-1) on load amount,protein loss,process productivity,and resin capacity utilization were investigated.The results showed that the CaptureSMB process could be successfully controlled by AutoMAb towards increased or slightly decreased concentration of feedstock.However,the load process would be out of control with drastically decreased target protein or impurities,and the decreased impurities would lead to protein loss.It was found that AutoMAb control would cause 44.7%non-operational areas and 18.3%protein loss areas in the variation range of±10 mAU·min^(-1).To improve the stability of the CaptureSMB process,a modified AutoMAb control that would stop the load procedure when the absolute value of the integral area reached the preset value,was proposed to reduce the risk of protein loss and the non-operational area.
基金Project supported by the NSAF(Grant No.U1930201)the National Natural Science Foundation of China(Grant Nos.12274331,91836101,and 91836302)+1 种基金the National Key R&D Program of China(Grant No.2018YFA0306504)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302100).
文摘Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that is capable of continuously interrogating the DC signal over many DD cycles.We illustrate its efficacy when applied to the measurement of a weak DC magnetic field with an atomic spinor Bose-Einstein condensate.Sensitivities approaching standard quantum limit or Heisenberg limit are potentially realizable for a coherent spin state or a squeezed spin state of 10000 atoms,respectively,while ambient laboratory level noise is suppressed by DD.Our work offers a practical approach to mitigate the limitations of DD to DC measurement and would find other applications for resorting coherence in quantum sensing and quantum information processing research.
基金Supported by National Natural Science Foundation of China (Grant No.12302177)Guangdong Provincial Basic and Applied Basic Research Foundation of China (Grant No.2024A1515010203)+1 种基金Shenzhen Science and Technology Program of China (Grant No.JCYJ20230807093602005)Shenzhen Key Laboratory of Intelligent Manufacturing for Continuous Carbon Fibre Reinforced Composites of China (Grant No.ZDSYS20220527171404011)。
文摘In order to predict the damage behaviours of 3D-printed continuous carbon fibre(CCF)reinforced composites,when additional short carbon fibre(SCF)composite components are employed for continuous printing or special functionality,a novel path-dependent progressive failure(PDPF)numerical approach is developed.First,a progressive failure model using Hashin failure criteria with continuum damage mechanics to account for the damage initiation and evaluation of 3D-printed CCF reinforced polyamide(PA)composites is developed,based on actual fibre placement trajectories with physical measurements of 3D-printed CCF/PA constituents.Meanwhile,an elastic-plastic model is employed to predict the plastic damage behaviours of SCF/PA parts.Then,the accuracy of the PDPF model was validated so as to study 3D-printed CCF/PA composites with either negative Poisson's ratio or high stiffness.The results demonstrate that the proposed PDPF model can achieve higher prediction accuracies in mechanical properties of these 3D-printed CCF/PA composites.Mechanism analyses show that the stress distribution is generally aggregated in the CCF areas along the fibre placement paths,and the shear damage and matrix tensile/compressive damage are the key damage modes.This study provides a new approach with valuable information for characterising complex 3D-printed continuous fibre-matrix composites with variable mechanical properties and multiple constituents.
基金supported by the National Natural Science Foundation of China(No.52274319)。
文摘Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the high-efficiency continuous casting of steels.The application of mold thermal monitoring(MTM) systems,which use thermocouples to detect and respond to temperature variations in molds,has become an effective method to address irregular initial solidification phenomena.Such systems are widely applied in numerous steel companies for sticker breakout prediction.However,monitoring the surface defects of strands remains immature.Hence,indepth research is necessary to utilize the potential advantages and comprehensive monitoring of MTM systems.This paper summarizes what is included in the irregular initial solidification phenomena and systematically reviews the current state of research on these phenomena by the MTM systems.Furthermore,the influences of mold slag behavior on monitoring these phenomena are analyzed.Finally,the remaining problems of the formation mechanisms and investigations of irregular initial solidification phenomena are discussed,and future research directions are proposed.
基金supported by the Key-Area Research and Development Program of Guangdong Province(No.2023B0909010002)the Science and Technology PlanningProjectofShenzhenMunicipality(No.JCYJ20190808145016980)。
文摘We demonstrate,for the first time and to the best of our knowledge,a continuous-wave and broadly tunable Cr:ZnSe bulk crystal laser pumped by a Tm:YLF bulk laser with 1845 nm and 1887 nm wavelengths.We compare the output characteristics and wavelength-tuning properties of the continuous-wave operation at the two pump wavelengths.In the continuous-wave operation,the maximum output power is 1.79 W with a slope efficiency of 28.8%,which is achieved at the pump wavelength of 1887 nm.In addition,a tuning range of~700 nm(696 nm)from 2040 nm to 2736 nm by using a reflective diffraction grating is realized.To the best of our knowledge,this is the widest tuning range realized so far for Cr:ZnSe bulk crystal tuned by gratings.
基金National Natural Science Foundation of China under Grant No.51879191。
文摘The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.
基金This work was financially supported by the National Key R&D Program of China(Nos.2021YFF1200700 and 2021YFA0911100)the National Natural Science Foundation of China(Nos.32171399,32171456,and T2225010)+6 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515012261)the Science and Technology Program of Guangzhou,China(No.202103000076)the Fundamental Research Funds for the Central Universities,Sun Yat-Sen University(No.22dfx02),and Pazhou Lab,Guangzhou(No.PZL2021KF0003)FML would like to thank the National Natural Science Foundation of China(Nos.32171335 and 31900954)JL would like to thank the National Natural Science Foundation of China(No.62105380)the China Postdoctoral Science Foundation(No.2021M693686)QQOY would like to thank the China Postdoctoral Science Foundation(No.2022M713645).
文摘Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain and potential tissue inflammation,and the presence of reactive oxygen species(ROS)due to inflammationmay affect glucose detection.Microneedle technology is less invasive,yet microneedle adhesion with skin tissue is limited.In this work,we developed a microarrow sensor array(MASA),which provided enhanced skin surface adhesion and enabled simultaneous detection of glucose and H_(2)O_(2)(representative of ROS)in interstitial fluid in vivo.The microarrows fabricated via laser micromachining were modified with functional coating and integrated into a patch of a three-dimensional(3D)microneedle array.Due to the arrow tip mechanically interlocking with the tissue,the microarrow array could better adhere to the skin surface after penetration into skin.The MASA was demonstrated to provide continuous in vivo monitoring of glucose and H_(2)O_(2) concentrations,with the detection of H_(2)O_(2) providing a valuable reference for assessing the inflammation state.Finally,the MASA was integrated into a monitoring system using custom circuitry.This work provides a promising tool for the stable and reliable monitoring of blood glucose in diabetic patients.
基金supported by the Anhui Provincial Natural Science Foundation (2308085MB58)the National Natural Science Foundation of China (NSFC, 21908037, 22278107)the Anhui Provincial Development and Reform Commission (2021-442)。
文摘The immerging three dimensional(3D) metal-organic framework(MOF)-reinforced composite solid-state electrolytes have attracted great interest because of the enhanced ionic conductivity and mechanical properties. However, the defective spatial arrangement of MOFs restricted by fabrication methodology leads to insufficient lithium ion transport in electrolytes. Herein, a 3D interconnected MOF framework tailored for all-solid-state electrolytes is rationally designed by a universal polydopamine(PDA)-engineered "double-sided tape" strategy. The PDA serves as a double-sided tape, firmly adhering on the special single-layer Nylon grid as well as offering uniform nucleation sites to anchor the metal nodes to ensure continuous growth of well-ordered MOFs. Benefiting from the Lewis acid feature of MOFs and its cage effect toward TFSI^(-), a fast and homogeneous lithium ion transport can be achieved through the internal channels within neighboring MOFs and the continuous MOFs/polymer interfaces both along the short-range circumferential boundary of Nylon fiber. The resultant composite electrolytes exhibit high lithium ion conductivity and prominent mechanical properties, rendering excellent cyclic stability whether used in coin or pouch cells. This work demonstrates a widely applicable "double-sided tape"strategy for controllable spatial arrangement of MOF nanoparticles on optional substrates, which provides a scalable approach to rationally construct desired lithium ion pathways within composite electrolytes.
基金support from the National Natural Science Foundation of China(Grant No.41827806)Liaoning Provincial Science and Technology Program(Grant No.2022JH2/101300109).
文摘This article introduces a high-power microwave mechanical integrated continuous mining device,which can achieve synchronous cutting of hard rocks by microwave and machinery.The device includes a cutting system,a rotary translation system,a loading system,a high-power microwave system,and a control and monitoring system.The technology of“master-slave follow-up”disc cutter alternating side cutting of rock was proposed,which could improve the effectiveness of rock breaking.The integrated structure of a microwave-cut system was then proposed,and synchronous motion of the microwave-cut system and adjustment of the loading system could be realized.The automatic adjustment technology of the microwave working distance was developed to dynamically control the optimal microwave working distance.The basic functions of the equipment were verified by tests.By comparing the two types of disk cutters,it is found that the master-slave follow-up disk cutter can improve significantly the dust removal effect and rock breaking efficiency in rock breaking process versus the conventional large disc cutter.Cutting tests of slate with or without microwave were conducted using a master-slave follow-up disk cutter.The results show that the cutting patterns of slates change from intermittent chunks(without microwave irradiation)to persistent debris(with microwave irradiation),and the cutting speed is significantly improved(170%).The development of the device provides a scientific basis for changing the conventional mining technology of metal mines and realizing the mechanical continuous mining in hard metal mines.
基金supported in part by the Intelligent Policing and National Security Risk Management Laboratory 2023 Opening Project(No.ZHKFYB2304)the Fundamental Research Funds for the Central Universities(Nos.SCU2023D008,2023SCU12129)+2 种基金the Natural Science Foundation of Sichuan Province(No.2024NSFSC1449)the Science and Engineering Connotation Development Project of Sichuan University(No.2020SCUNG129)the Key Laboratory of Data Protection and Intelligent Management(Sichuan University),Ministry of Education.
文摘The security performance of cloud services is a key factor influencing users’selection of Cloud Service Providers(CSPs).Continuous monitoring of the security status of cloud services is critical.However,existing research lacks a practical framework for such ongoing monitoring.To address this gap,this paper proposes the first NonCollaborative Container-Based Cloud Service Operation State Continuous Monitoring Framework(NCCMF),based on relevant standards.NCCMF operates without the CSP’s collaboration by:1)establishing a scalable supervisory index system through the identification of security responsibilities for each role,and 2)designing a Continuous Metrics Supervision Protocol(CMA)to automate the negotiation of supervisory metrics.The framework also outlines the supervision process for cloud services across different deployment models.Experimental results demonstrate that NCCMF effectively monitors the operational state of two real-world IoT(Internet of Things)cloud services,with an average supervision error of less than 15%.
基金the financial supports from the Science and Technology Special Project, China (No. K19168)the National Science and Technology Major Project of China (No. 2017-VI-0004-0075)the National Natural Science Foundation of China (No. 52231002)。
文摘Ti_(2)AlNb-based alloy was joined in a continuous drive friction welding machine under different rotational rates(500,1000 and 1500 r/min).The microstructure and mechanical properties of the joints were investigated.It is shown that the weld zone(WZ) is fully composed of recrystallized B2 phase,and the grain size decreases with increasing rotational rate.The thermo-mechanically affected zone(TMAZ) suffers severe deformation during welding,due to which most of original precipitation phase is dissolved and streamlines are present.In the heat affected zone(HAZ),only the fine O phase is dissolved.The as-welded joint produced using 1000 r/min has the best mechanical properties,whose strength and elongation are both close to those of the base metal,while the as-welded joint obtained using 500 r/min exhibits the worst mechanical properties.Post-weld annealing treatment annihilates the deformation microstructure and fine O phase precipitates in the joints,consequently improving the mechanical properties significantly.Decomposed α_(2) phase is a weakness for the mechanical performance of the joint since microcracks are apt to form in it in the tensile test.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61971348 and 61201194)。
文摘In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propose a multi-ring discrete modulation continuous variable quantum key sharing scheme(MR-DM-CVQSS). In this paper, we primarily compare single-ring and multi-ring M-symbol amplitude and phase-shift keying modulations. We analyze their asymptotic key rates against collective attacks and consider the security key rates under finite-size effects. Leveraging the characteristics of discrete modulation, we improve the quantum secret sharing scheme. Non-dealer participants only require simple phase shifters to complete quantum secret sharing. We also provide the general design of the MR-DM-CVQSS protocol.We conduct a comprehensive analysis of the improved protocol's performance, confirming that the enhancement through multi-ring M-PSK allows for longer-distance quantum key distribution. Additionally, it reduces the deployment complexity of the system, thereby increasing the practical value.
基金National Natural Science Foundation of China(Grant No.22005275)to provide fund for conducting experiments.
文摘In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of DAAF from synthesis to spherical coating was designed and established in this paper, which combined ultrasonic micromixing reaction with microdroplet globular template. In the rapid micromixing stage, the microfluidic mixing technology with ultrasonic was used to synergistically strengthen the uniform and rapid mass transfer mixing reaction between raw materials to ensure the uniformity of DAAF particle nucleation-growth, and to prepare high-quality DAAF crystals with uniform structure and morphology and concentrated particle size distribution. In the microdroplet globular template stage, the microfluidic droplet technology was used to form a droplet globular template with uniform size under the shear action of the continuous phase of the dispersed phase solution containing DAAF particles and binder. The size of the droplet template was controlled by adjusting the flow rate ratio between the continuous phase and the dispersed phase. In the droplet globular template, with the diffusion of the solvent in the dispersed phase droplets, the binder precipitates to coat the DAAF into a ball, forming a DAAF microsphere with high sphericity, narrow particle size distribution and good monodispersity. The problem of discontinuity and DAAF particle suspension in the process was solved, and the coating theory under this process was studied. DAAF was coated with different binder formulations of fluororubber(F2604), nitrocellulose(NC) and NC/glycidyl azide polymer(GAP), and the process verification and evaluation of the system were carried out. The balling effects of large, medium and small droplet templates under different binder formulations were studied. The scanning electron microscope(SEM) results show that the three droplet templates under the three binder formulations exhibit good balling effect and narrow particle size distribution. The DAAF microspheres were characterized by powder X-ray diffraction(XRD), differential scanning calorimetry(DSC), thermo-gravimetric(TG) and sensitivity analyzer. The results showed that the crystal structure of DAAF did not change during the process, and the prepared DAAF microspheres had lower decomposition temperature and lower mechanical sensitivity than raw DAAF. The results of detonation parameters show that the coating of DAAF by using the above three binder formulations will not greatly reduce the energy output of DAAF, and has comparable detonation performance to raw DAAF. This study proves an efficient and safe continuous system from synthesis to spherical coating modification of explosives, which provides a new way for the continuous, safe and efficient preparation of spherical explosives.
文摘This paper is mainly about the spectral properties of a class of Jacobi operators(H_(c,b)u)(n)=c_(n)u(n+1)+c_(n-1)u(n-1)+b_(n)u(n),.where∣c_(n)−1∣=O(n^(−α))and b_(n)=O(n^(−1)).We will show that,forα≥1,the singular continuous spectrum of the operator is empty.