期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
基于联锁运行数据的转辙机健康状态智能分析方法 被引量:1
1
作者 张轩赫 梁志国 +1 位作者 张宏扬 王海峰 《北京交通大学学报》 CAS CSCD 北大核心 2023年第2期137-146,共10页
转辙机是重要的安全关键信号设备,目前多依赖人工经验进行健康状态分析,存在误差大、预测不准的问题,现场维修维护面临很大压力.基于转辙机控制原理,利用联锁运行数据,提出一种结合深度置信网络和连续隐半马尔科夫模型的智能分析方法,... 转辙机是重要的安全关键信号设备,目前多依赖人工经验进行健康状态分析,存在误差大、预测不准的问题,现场维修维护面临很大压力.基于转辙机控制原理,利用联锁运行数据,提出一种结合深度置信网络和连续隐半马尔科夫模型的智能分析方法,对转辙机健康状态进行评估预测.首先,通过深度置信网络提取特征作为连续隐半马尔科夫模型的输入,利用联锁状态数据对预测模型进行训练,以不同观测值序列输出最大似然概率来确定转辙机的退化状态;然后,通过各退化状态驻留时间均值及方差计算转辙机退化状态的驻留时间,以此来预测转辙机健康状态的持续时间.实验表明,该方法在状态预测准确率方面达到83.08%,较传统隐半马尔可夫模型提高约13%,具有较好的预测精度,能够有效支撑现场维修维护工作.本文对信号设备的智能运维具有一定的借鉴作用. 展开更多
关键词 健康状态 转辙机 深度置信网络 连续隐半马尔科夫模型
下载PDF
结合DBN和CHMM的滚动轴承性能退化评估 被引量:1
2
作者 潘玉娜 魏婷婷 程道来 《机械科学与技术》 CSCD 北大核心 2023年第3期462-467,共6页
针对现有退化评估方法应用情境单一,特征指标筛选依赖人工经验,提出了一种基于深度置信网络(Deep belief network, DBN)和连续隐马尔科夫(Continuous hidden markov model, CHMM)相结合的滚动轴承性能退化评估方法。将滚动轴承正常状态... 针对现有退化评估方法应用情境单一,特征指标筛选依赖人工经验,提出了一种基于深度置信网络(Deep belief network, DBN)和连续隐马尔科夫(Continuous hidden markov model, CHMM)相结合的滚动轴承性能退化评估方法。将滚动轴承正常状态下的振动信号处理为归一化幅值谱,以此作为DBN特征自动提取模型的输入,并使用CHMM做评估模型,其中CHMM的训练样本即通过DBN提取的正常状态下的特征向量。通过不同情境下的滚动轴承全寿命周期实验数据验证了所提模型的有效性。与近期有关文献所提方法进行比较,该方法避免了人工选择特征指标,且对早期微弱故障检测具有一定的敏感性。 展开更多
关键词 滚动轴承 性能退化 深度置信网络(DBN) 连续隐马尔科夫(CHMM)
下载PDF
LVCSR系统中一种基于区分性和自适应瓶颈深度置信网络的特征提取方法 被引量:9
3
作者 陈雷 杨俊安 +1 位作者 王一 王龙 《信号处理》 CSCD 北大核心 2015年第3期290-298,共9页
大词汇量连续语音识别系统中,为了进一步增强网络的鲁棒性、提升瓶颈深度置信网络的识别准确率,本文提出一种基于区分性和自适应瓶颈深度置信网络的特征提取方法。该方法首先使用鲁棒性较强的瓶颈深度置信网络进行初步特征提取,进而进... 大词汇量连续语音识别系统中,为了进一步增强网络的鲁棒性、提升瓶颈深度置信网络的识别准确率,本文提出一种基于区分性和自适应瓶颈深度置信网络的特征提取方法。该方法首先使用鲁棒性较强的瓶颈深度置信网络进行初步特征提取,进而进行区分性训练,使网络的区分性更强、识别准确率更高,在此基础上引入说话人自适应技术对网络进行调整,提高系统的鲁棒性。本文利用提出的声学特征在多个噪声较强、主题风格较为随意的多个公共连续语音数据库上进行了测试,识别准确率取得了6.9!的提升。实验结果表明所提出的特征提取方法相对于传统方法的优越性。 展开更多
关键词 连续语音识别 瓶颈深度置信网络 区分性训练 说话人自适应
下载PDF
基于数据挖掘的电子皮带秤皮带跑偏检测 被引量:4
4
作者 朱亮 李东波 +2 位作者 吴崇友 吴绍锋 袁延强 《农业工程学报》 EI CAS CSCD 北大核心 2017年第1期102-109,共8页
为提高电子皮带秤连续累计称量精度,针对严重影响精度的电子皮带秤跑偏,采用对皮带秤现有原始传感器的数据挖掘实现跑偏量实时在线检测,以取代传统硬件检测设备。引入流形学习和深度学习,分别提出了基于局部切空间排列(local tangent sp... 为提高电子皮带秤连续累计称量精度,针对严重影响精度的电子皮带秤跑偏,采用对皮带秤现有原始传感器的数据挖掘实现跑偏量实时在线检测,以取代传统硬件检测设备。引入流形学习和深度学习,分别提出了基于局部切空间排列(local tangent space alignment,LTSA)+广义回归神经网络(generalized regression neural networks,GRNN)和基于连续深度置信网络(continuous deep belief networks,CDBN)的在线跑偏特征提取模型,再结合极限学习机(extreme learning machine,ELM)以跑偏特征为模型输入进行跑偏量预测。最后通过试验对该文提出的在线跑偏量预测模型的性能进行了验证:LTSA+GRNN+ELM平均跑偏预测精度为93.33%,平均每组预测时间38.29 ms;CDBN+ELM预测精度则高达98.61%,平均每组预测时间1.47 ms。二者预测精度和实时性皆表明能取代传统硬件检测装置,为皮带跑偏检测提供了一种方法,为进一步的皮带秤在线精度补偿和故障预测提供了必要依据。 展开更多
关键词 数据挖掘 传感器 模型 皮带跑偏 流形学习 连续深度置信网络 极限学习机
下载PDF
连续语音识别中基于Dropout修正线性深度置信网络的声学模型 被引量:4
5
作者 陈雷 杨俊安 +1 位作者 王龙 李晋徽 《声学技术》 CSCD 北大核心 2016年第2期146-154,共9页
大词汇量连续语音识别系统中,为了增强现有声学模型的表征能力、防止模型过拟合,提出一种基于遗失策略(Dropout)修正线性深度置信网络的声学模型构建方法。该方法使用修正线性函数代替传统Logistic函数进行深度置信网络训练,修正线性函... 大词汇量连续语音识别系统中,为了增强现有声学模型的表征能力、防止模型过拟合,提出一种基于遗失策略(Dropout)修正线性深度置信网络的声学模型构建方法。该方法使用修正线性函数代替传统Logistic函数进行深度置信网络训练,修正线性函数更接近生物神经网络的工作方式,增强了模型的表征能力;同时引入Dropout策略对修正线性深度置信网络进行调整,避免节点之间的协同作用,防止网络出现过拟合。文章利用公开语音数据集进行了实验,实验结果证明了所提出的声学模型构建方法相对于传统方法的优越性。 展开更多
关键词 连续语音识别 深度置信网络 修正线性 过拟合 DROPOUT
下载PDF
一种改进的深度置信网络在交通流预测中的应用 被引量:6
6
作者 赵庶旭 崔方 《计算机应用研究》 CSCD 北大核心 2019年第3期772-775,785,共5页
针对现有交通流预测方法忽视对交通流数据自身特征的有效利用以及不能模拟更复杂的数学运算,提出了一种改进深度置信网络(deep belief network,DBN)的交通流预测方法。该方法结合深度置信网络模型与softmax回归作为预测模型,利用连续受... 针对现有交通流预测方法忽视对交通流数据自身特征的有效利用以及不能模拟更复杂的数学运算,提出了一种改进深度置信网络(deep belief network,DBN)的交通流预测方法。该方法结合深度置信网络模型与softmax回归作为预测模型,利用连续受限玻尔兹曼机(continuous restricted Boltzmann machines,CRBM)处理输入特征向量,利用自适应学习步长(adaptive learning step,ALS)减少RBM训练网络模型时重建误差所需的时间,用改进的深度置信网络模型进行交通流特征学习,在网络顶层连接softmax回归模型进行流量预测。实验结果表明,在实际的交通流数据预测中,改进的DBN模型的预测准确率以及时间复杂度相比传统预测模型都得到了较好的改善。 展开更多
关键词 交通流预测 深度置信网络 连续受限玻尔兹曼机 自适应学习步长
下载PDF
改进深度置信网络的苹果内部品质评价 被引量:1
7
作者 胡春艳 于来行 《食品与机械》 北大核心 2022年第4期156-161,206,共7页
目的:解决苹果近红外光谱存在大量冗余信息和苹果内部品质评价精度较低的问题,提高苹果内部品质评价的精度。方法:提出一种连续投影法的特征波长筛选与灰狼优化算法改进深度置信网络(GWO-DBN)的苹果内部品质评价模型。针对苹果光谱数据... 目的:解决苹果近红外光谱存在大量冗余信息和苹果内部品质评价精度较低的问题,提高苹果内部品质评价的精度。方法:提出一种连续投影法的特征波长筛选与灰狼优化算法改进深度置信网络(GWO-DBN)的苹果内部品质评价模型。针对苹果光谱数据具有维度高而复杂的特点,分别对比全波段和主成分分析法、连续投影法等筛选特征波长的结果,确定苹果光谱特征波长筛选方法;针对深度置信网络(DBN)模型性能受参数设定的影响,运用灰狼优化算法(GWO)对DBN模型参数进行优化选择,提出一种连续投影法的特征波长筛选与GWO-DBN的苹果内部品质评价模型。结果:与中粒子群算法改进深度置信网络(PSO-DBN)、遗传算法改进深度置信网络(GA-DBN)和DBN相比,基于GWO-DBN的苹果内部品质评价的准确度最高。结论:GWO-DBN算法可以有效提高苹果内部品质评价的准确率。 展开更多
关键词 灰狼优化算法 深度置信网络 近红外光谱 连续投影法
下载PDF
一种新的基于DBN的声学特征提取方法
8
作者 陈雷 杨俊安 +1 位作者 王龙 李晋徽 《无线电通信技术》 2015年第6期41-45,共5页
大词汇量连续语音识别系统中,为了进一步增强网络的鲁棒性、提升深度置信网络的识别准确率,提出一种基于区分性和ODLR自适应瓶颈深度置信网络的特征提取方法。该方法首先使用鲁棒性较强的瓶颈深度置信网络进行初步特征提取,进而进行区... 大词汇量连续语音识别系统中,为了进一步增强网络的鲁棒性、提升深度置信网络的识别准确率,提出一种基于区分性和ODLR自适应瓶颈深度置信网络的特征提取方法。该方法首先使用鲁棒性较强的瓶颈深度置信网络进行初步特征提取,进而进行区分性训练,使网络的区分性更强、识别准确率更高,在此基础上引入说话人自适应技术对网络进行调整,提高模型的鲁棒性。利用提出的声学特征在多个噪声较强、主题风格较为随意的多个公共连续语音数据库上进行了测试,识别结果取得了22.2%的提升。实验结果表明所提出的特征提取方法有效性。 展开更多
关键词 连续语音识别 瓶颈深度置信网络 区分性训练 ODLR
下载PDF
基于小波与深度置信网络的柴油机失火故障诊断 被引量:9
9
作者 贾继德 贾翔宇 +2 位作者 梅检民 曾锐利 张帅 《汽车工程》 EI CSCD 北大核心 2018年第7期838-843,共6页
为更深入地了解柴油机失火故障的机理,提高失火故障诊断准确率,本文中提出了一种基于小波与深度置信网络的柴油机失火故障诊断方法。首先,采用等角度采样法对柴油机缸盖振动信号进行采样,获得平稳的角域信号,消除循环波动干扰;然后,通... 为更深入地了解柴油机失火故障的机理,提高失火故障诊断准确率,本文中提出了一种基于小波与深度置信网络的柴油机失火故障诊断方法。首先,采用等角度采样法对柴油机缸盖振动信号进行采样,获得平稳的角域信号,消除循环波动干扰;然后,通过连续小波变换对角域信号进行角-频分析,提取点火频率附近频带后利用连续小波逆变换重构信号;接着,按照柴油机工作循环从重构信号中,分段提取方差、峭度和峰值等12种常用特征参数并构造诊断参数矩阵;最后,利用深度置信网络对诊断参数矩阵进行降维和第二次特征提取,并依据二次特征对失火故障进行诊断。将该方法应用到某型柴油机上的结果表明,该方法能准确提取失火故障信息,有效诊断失火故障。 展开更多
关键词 柴油机 失火故障诊断 点火频率 连续小波变换 深度置信网络
下载PDF
滑翔导弹末段多约束智能弹道规划 被引量:6
10
作者 邵会兵 崔乃刚 韦常柱 《光学精密工程》 EI CAS CSCD 北大核心 2019年第2期410-420,共11页
滑翔导弹末段飞行时空复杂度高、不确定性强、约束多,给弹道规划与制导算法带来了较大的建模和求解难度。针对这一问题,同时增大末段机动范围并提高弹道规划效率,本文提出一种利用连续型深度置信神经网络(ConvolutionalDeep Brief Netwo... 滑翔导弹末段飞行时空复杂度高、不确定性强、约束多,给弹道规划与制导算法带来了较大的建模和求解难度。针对这一问题,同时增大末段机动范围并提高弹道规划效率,本文提出一种利用连续型深度置信神经网络(ConvolutionalDeep Brief Networks,CDBN)预测机动能力、设计经由点状态实现末段多约束智能弹道规划的方法。过程中采用CDBN对机动能力进行在线预测,快速判定经由点状态的可行性,并且通过经由点状态智能设计,实现前后段能量的优化分配,扩大弹道机动包络;通过设计三角函数型弹目视线角实现末段弹道摆动机动,推导机动弹道最优末制导律对视线角进行跟踪,并调节机动频率以满足速度约束。仿真结果表明,CDBN相对BP网络具有更高的机动能力预测精度;本文所提智能弹道规划方法在满足末端速度约束的前提下,可以实现弹道摆动机动并大幅增加飞行包络。弹道规划能够在0.5s内完成,满足工程应用的快速性要求。 展开更多
关键词 滑翔导弹 机动能力预测 连续型深度置信网络 机动弹道规划
下载PDF
连续时变自编码机在人体行为识别中的应用 被引量:2
11
作者 王鲁昆 唐功友 +1 位作者 张健 田春鹏 《上海交通大学学报》 EI CAS CSCD 北大核心 2016年第7期1065-1070,共6页
针对人体行为数据的识别与分类问题,提出一种连续时变自编码机(Continuous Time-varying Autoencoder,CTAE)模型.该模型在激活函数中增加高斯随机单元,强化对非线性连续型数据的特征学习与提取.在人体行为识别实验中,从原始数据信号中... 针对人体行为数据的识别与分类问题,提出一种连续时变自编码机(Continuous Time-varying Autoencoder,CTAE)模型.该模型在激活函数中增加高斯随机单元,强化对非线性连续型数据的特征学习与提取.在人体行为识别实验中,从原始数据信号中提取十维频域特征和四维时域特征;利用主成分分析(Principle Component Analysis,PCA)方法实现特征数据降维;针对预处理完的人体行为数据,训练由多个CTAE组成的深度信念网络(Deep Belief Network,DBN),实现行为识别与非线性分类.仿真验证了模型的有效性. 展开更多
关键词 连续时变自编码机 深度信念网络 人体行为识别 深度学习
下载PDF
深度信念网络的Bottleneck特征提取方法 被引量:3
12
作者 谈建慧 景新幸 杨海燕 《桂林电子科技大学学报》 2016年第2期118-122,共5页
为了提升连续语音识别系统的识别率,提出一种基于深度信念网络的Bottleneck特征提取方法。该方法使用对比散度算法,采用无监督的预训练堆叠限制玻尔兹曼机得到网络初始化参数,进而采用反向传播算法,以最大化帧级交叉熵作为训练准则,反... 为了提升连续语音识别系统的识别率,提出一种基于深度信念网络的Bottleneck特征提取方法。该方法使用对比散度算法,采用无监督的预训练堆叠限制玻尔兹曼机得到网络初始化参数,进而采用反向传播算法,以最大化帧级交叉熵作为训练准则,反向迭代对网络参数进行微调。采用上下文相关的三音素模型,以音素错误率大小作为评价系统性能的准则。实验结果表明,所提出的基于深度信念网络提取的Bottleneck特征相对于传统特征更具优越性。 展开更多
关键词 连续语音识别 深度信念网络 Bottleneck特征 音素错误率
下载PDF
基于改进的连续型深度信念网络的晶圆良率预测方法 被引量:6
13
作者 许鸿伟 张洁 +1 位作者 吕佑龙 郑鹏 《计算机集成制造系统》 EI CSCD 北大核心 2020年第9期2388-2395,共8页
晶圆良率是衡量半导体产品质量的关键指标,对其进行稳定、准确的预测能够帮助发现晶圆加工工艺缺陷、提高芯片质量、控制芯片生产成本。针对晶圆良率的影响因素多、数据体量大、数据间关系复杂等特点,以晶圆加工过程中的电性测试参数为... 晶圆良率是衡量半导体产品质量的关键指标,对其进行稳定、准确的预测能够帮助发现晶圆加工工艺缺陷、提高芯片质量、控制芯片生产成本。针对晶圆良率的影响因素多、数据体量大、数据间关系复杂等特点,以晶圆加工过程中的电性测试参数为依据,提出一种基于改进的连续型深度信念网络的晶圆良率预测方法。首先提出晶圆电性测试参数的两阶段数据预处理方法,第一阶段对晶圆电性测试参数中的缺失值、异常值进行数据清洗,第二阶段对晶圆电性测试测试参数间的多重共线性关系进行主成分分析,以获取预测模型的输入变量。然后设计了基于深度信念网络的晶圆良率预测模型,通过改进隐藏层的连续型受限制玻尔兹曼机,实现了关键特征的自动提取,利用输出层的误差反向传播机制,实现了晶圆良率的准确预测。采用实例数据,对比了所提方法与现有文献方法的预测准确率,从而验证了所提方法的有效性。 展开更多
关键词 晶圆良率预测 连续型深度信念网络 晶圆电性测试参数 主成分分析法
下载PDF
基于重构误差的连续型DBN的深度确定方法 被引量:3
14
作者 王功明 李文静 +1 位作者 乔俊飞 沈朝旭 《控制工程》 CSCD 北大核心 2019年第2期320-326,共7页
针对连续型深度信念网(Continuous Deep Belief Network,CDBN)隐含层层数难以确定的问题,提出一种基于重构误差的CDBN网络深度确定方法。多个连续型受限玻尔兹曼机(Continuous Restricted Boltzmann Machine,CRBM)叠加构成CDBN。通过分... 针对连续型深度信念网(Continuous Deep Belief Network,CDBN)隐含层层数难以确定的问题,提出一种基于重构误差的CDBN网络深度确定方法。多个连续型受限玻尔兹曼机(Continuous Restricted Boltzmann Machine,CRBM)叠加构成CDBN。通过分析CRBM的重构误差与CDBN网络能量的相关性,设定重构误差阈值并设计网络深度决策机制,实现对CDBN隐含层层数进行自组织调整。仿真实验验证,基于重构误差的CDBN网络深度确定方法能够对CDBN的最优隐含层层数进行确定,有效提高了网络深度决策的效率。 展开更多
关键词 连续型深度信念网 重构误差 网络深度 仿真实验
下载PDF
改进深度置信网络在城市用水量预测中的应用 被引量:1
15
作者 刘春柳 张征 《软件导刊》 2020年第1期41-45,共5页
城市用水量的准确预测可以为供水管网智能调度、异常报警提供支持,便于及时发现漏损、排查及检修,具有极大的现实意义与经济利益。针对现有用水量预测方法忽视用水量数据自身特征及不能模拟更复杂的数学运算的问题,提出一种改进深度置... 城市用水量的准确预测可以为供水管网智能调度、异常报警提供支持,便于及时发现漏损、排查及检修,具有极大的现实意义与经济利益。针对现有用水量预测方法忽视用水量数据自身特征及不能模拟更复杂的数学运算的问题,提出一种改进深度置信网络(DBN)的用水量预测方法。对有高斯分布的连续受限玻尔兹曼机(CRBM)引入稀疏正则项,解决特征同质化现象的同时也适用于用水量数据输入。实验结果表明,在实际用水量预测中,改进DBN模型相比传统神经网络和传统DBN预测模型,预测准确率得到了较大的提高。 展开更多
关键词 水量预测 深度置信网络 稀疏连续受限玻尔兹曼机
下载PDF
特征房价空间分析及连续型深度置信网络预测
16
作者 吴莞姝 胡龙超 赵凯 《华侨大学学报(自然科学版)》 CAS 2021年第4期537-546,共10页
以上海为研究区域,利用数据爬虫手段搜集、整理上海市二手房交易数据,通过空间自相关分析二手房交易价格的空间效应,并使用连续型深度置信网络对二手房交易价格进行分析预测.研究结果表明:上海市二手房交易价格在空间上具有显著的自相... 以上海为研究区域,利用数据爬虫手段搜集、整理上海市二手房交易数据,通过空间自相关分析二手房交易价格的空间效应,并使用连续型深度置信网络对二手房交易价格进行分析预测.研究结果表明:上海市二手房交易价格在空间上具有显著的自相关效应,在上海市核心区域存在高-高集聚效应,在周边区域呈现低-低集聚效应,而在核心与周边交界地区存在高-低集聚和低-高集聚的负向空间效应;特征变量对价格偏高区域的二手房交易价格解释力度较小;除中心区域外,基于连续型深度置信网络的特征变量对上海市二手房交易价格预测能力良好. 展开更多
关键词 连续型深度置信网络 建筑特征 区位特征 邻里特征 空间自相关 上海市
下载PDF
基于CDBN与BiLSTM的多元退化设备剩余寿命预测 被引量:9
17
作者 牟含笑 郑建飞 +2 位作者 胡昌华 赵瑞星 董青 《航空学报》 EI CAS CSCD 北大核心 2022年第7期301-312,共12页
基于多传感器对复杂工业设备的多元健康状态进行监测,进而实现设备更全面准确的性能评估、剩余寿命预测与健康管理已逐渐推广应用。针对一类监测数据呈现大规模、非线性、高维化等特点的多元退化设备,提出了一种基于连续深度置信网络(CD... 基于多传感器对复杂工业设备的多元健康状态进行监测,进而实现设备更全面准确的性能评估、剩余寿命预测与健康管理已逐渐推广应用。针对一类监测数据呈现大规模、非线性、高维化等特点的多元退化设备,提出了一种基于连续深度置信网络(CDBN)与双向长短期记忆(BiLSTM)网络的剩余寿命预测方法。首先,通过CDBN对监测到的性能退化数据进行分析,提取出反映多元退化设备隐含深层次特征的健康指标;然后,根据构造的健康指标,利用BiLSTM网络挖掘其时序信息和退化趋势,预测多元退化设备的剩余寿命;最后,利用蒙特卡洛仿真技术得到剩余寿命的区间估计,并通过商用模块化航空推进系统数据集验证所提方法的有效性和先进性。结果表明:所提方法能够有效提高此类设备的剩余寿命预测准确度,具有潜在的应用价值。 展开更多
关键词 多元退化设备 剩余寿命预测 健康指标 连续深度置信网络(cdbn) 双向长短期记忆(BiLSTM)网络
原文传递
Blind false data injection attacks in smart grids subject to measurement outliers 被引量:1
18
作者 Xing-Jian Ma Huimin Wang 《Journal of Control and Decision》 EI 2022年第4期445-454,共10页
False data injection attacks(FDIAs)can manipulate measurement data from Supervisory Control and Data Acquisition(SCADA)system and threat state estimation in smart grids.Blind FDIAs(BFDIAs)enhance traditional FDIAs,whi... False data injection attacks(FDIAs)can manipulate measurement data from Supervisory Control and Data Acquisition(SCADA)system and threat state estimation in smart grids.Blind FDIAs(BFDIAs)enhance traditional FDIAs,which eliminate the limitation of grasping measurement Jacobian matrix H in advance,but when there are outliers in measurement data,attack performance is degraded.In this paper,improved BFDIAs are proposed.In off-line phase,lowdimensional measurement matrix without outliers calculated by Linear Local Tangent Space Alignment algorithm(LLTSA)is sent into Continuous Deep Belief Network(CDBN)as training data to learn their probability distribution.In on-line phase,real-time low-dimensional measurement matrix with outliers are sent into the trained model as inputs,and outputs are reconstructed by the probability distribution in off-line phase,which eliminates the influence of outliers indirectly.Simulations are implemented on PJM 5-bus and IEEE 14-bus systems to verify the performance of proposed strategy compared with PCA-based BFDIAs. 展开更多
关键词 Smart grids blind false data injection attacks measurement outliers continuous deep belief network linear local tangent space alignment algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部