Based on a rolling model, the simulation of strip thickness during cold continuous rolling was made on the platform software Matrix. The simulation system combined the discrete system with continuous system for high s...Based on a rolling model, the simulation of strip thickness during cold continuous rolling was made on the platform software Matrix. The simulation system combined the discrete system with continuous system for high speed and dynamics. Simulation parameters were calculated by differential element method, and the simulation results fit in with practical data very well.展开更多
A new copper strip production technology combined with continuous extrusion and rolling technology was proposed. The roll velocity must first be matched with the continuous extrusion velocity to achieve continuous ext...A new copper strip production technology combined with continuous extrusion and rolling technology was proposed. The roll velocity must first be matched with the continuous extrusion velocity to achieve continuous extrusion and roll forming. The bite condition of continuous extrusion was determined, and the compatibility equation between the roll velocity and parameters such as the extrusion wheel velocity, reduction, and strip size was established through mechanical by plastic theoretical calculations. The finite element model of continuous extrusion and rolling was then established by using the TLJ400 continuous extrusion machine with a roll diameter of 200 mm. The relationship between the continuous extrusion and rolling velocities was determined through numerical simulations by software DEFORM-3D, and the accuracy of compatibility equation of velocity was verified.展开更多
Three-dimensional finite element models were developed to analyze 304 stainless steel rod and wire hot continuous rolling process with the help of MSC.Marc software. The entire 30-pass deformation process and the actu...Three-dimensional finite element models were developed to analyze 304 stainless steel rod and wire hot continuous rolling process with the help of MSC.Marc software. The entire 30-pass deformation process and the actual parameters of production line were taken into account. Static and dynamic procedures were used to study the continuous rolling process with the aid of the thermo-mechanical coupled FEM of elastic-plasticity. The properties of billets, such as deformation, temperature field and rolling force, were mainly discussed. The simulation results of temperature agree well with the measured values. Comparisons of the analysis results obtained using static implicit method and dynamic implicit method were presented. It is shown that static implicit procedure is more accurate than dynamic implicit procedure and is able to simulate the rolling process with a lower speed, such as a roughing mill. Whereas, dynamic analysis shows a higher efficiency than static analysis and is fit for simulating the rolling process with a higher speed, such as a finishing mill.展开更多
The influences of the dissimilarity in the roll speeds on the microstructure, texture and mechanical properties of 7075 aluminum plates produced via combined continuous casting and rolling(CCCR) process were investiga...The influences of the dissimilarity in the roll speeds on the microstructure, texture and mechanical properties of 7075 aluminum plates produced via combined continuous casting and rolling(CCCR) process were investigated. Several experiments were conducted with three different upper/lower roll rotational speed ratios(ω/ω0, ω is the upper roll rotational speed and ω0 is the lower roll rotational speed), namely 1:1, 1:1.2 and 1:1.4. It was found that the greatest dissimilarity in the roll speed(ω/ω0=1:1.4) improved the yield strength and ultimate tensile strength of 7075 Al plate in the rolling direction by 41.5% and 21.9%, respectively. Moreover, at a roll speed ratio of ω/ω0=1:1.4, the average grain size was decreased by 36% whereas the mean hardness of the transverse cross-section of the finally rolled plate was increased by about 9.2%. Texture studies also revealed that the more the difference in the roll speeds was, the greater the isotropy and the hardness of the final product were. Nevertheless, conducting CCCR operation with different roll speeds resulted in about 6% reduction in the elongation of the deformed plate.展开更多
An FE model was developed to study thermal behavior during the rod and wire hot continuous rolling process. The FE code MSC. Marc was used in the simulation using implicit static arithmetic. The whole rolling process ...An FE model was developed to study thermal behavior during the rod and wire hot continuous rolling process. The FE code MSC. Marc was used in the simulation using implicit static arithmetic. The whole rolling process of 30 passes was separated and simulated with several continuous 3D elastic-plastic FE models. A rigid pushing body and a data transfer technique were introduced into this model. The on-line experiments were conducted on 304 stainless steel and GCr15 steel hot continuous rolling process to prove the results of simulation by implicit static FEM. The results show that the temperature results of finite element simulations are in good agreement with experiments, which indicate that the FE model developed in this study is effective and efficient.展开更多
A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3...A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3D elastic-plastic finite element method (FEM). The temperature of characteristic analysis points in the intermediate cross-section of the workpiece has been simulated at initial temperature ranging from 960 to 1000 ℃ and initial velocity in range of 0.15-0.55 m·s^-1. Based on finite element analysis and microstructural observation in cylindrical hot compression experiments, the appropriate hot continuous rolling technologies have been designed for rod products with different diameters. For a real rolling practice, the simulated surface temperature was examined and is in good agreement with the measured one.展开更多
Combined with the technological characteristics of thin slab continuous rolling process (TSCR), dynamic recrystallization of an extremely coarse austenite of low carbon steel is studied by Thermecmaster-Z hot simula...Combined with the technological characteristics of thin slab continuous rolling process (TSCR), dynamic recrystallization of an extremely coarse austenite of low carbon steel is studied by Thermecmaster-Z hot simulator. By the analysis of true stress-strain curves and the observation of microstructures at different deformation stages, the critical stress and critical strain are determined under different deformation conditions. The effect of Z parameter on dynamic recrystallization of coarse austenite is studied. The microstructure evolution in real production is also discussed.展开更多
The flow stress behavior of GH4033 superalloy was determined by the hot compression tests at the temperatures of 1223-1473 K and the total strains of 0.6 with the strain rates of 0.001-30.0 s^(-1) by using cylindrical...The flow stress behavior of GH4033 superalloy was determined by the hot compression tests at the temperatures of 1223-1473 K and the total strains of 0.6 with the strain rates of 0.001-30.0 s^(-1) by using cylindrical samples.The processing maps based on the dynamic material model(DMM)combined with the corresponding microstructure observations indicate the reasonable processing domain locating at the strain rates of 0.1-1.0 s^(-1) and the deformation temperature of 1273-1423 K.Meanwhile,the numerical simulation based on finite element model(FEM)described the variation of the effective strain,effective strain rate and the temperature for the core node,and unveiled the influence of the hot rolling parameters considering the initial temperature(T_(0))range of 1223-1473 K and the first-stand biting velocity(v_(0))range of 0.15-0.35 m·s^(-1).Furthermore,the deformation stability of GH4033 superalloy in the round rod hot continuous rolling(HCR)process is described and analyzed by coupling the three-dimensional(3-D)processing map,and the spatial trajectory lines were determined by the numerically simulated temperatures,the strains and the strain rates.Finally,the results show that the hot deformation stability of GH4033 can be achieved by the rolling process parameters located at T_(0)=1423 K and v_(0)=0.25 m·s^(-1).Additionally,the practical HCR processes as T_(0)=1423 K and v_(0)=0.15,0.25,0.35 m·s^(-1) were operated to verify the influence of the hot rolling parameters on the hot deformation stability by the microstructure observation of the final products.展开更多
Morlet wavelet is suitable to extract the impulse components of mechanical fault signals. And thus its continuous wavelet transform (CWT) has been successfully used in the field of fault diagnosis. The principle of ...Morlet wavelet is suitable to extract the impulse components of mechanical fault signals. And thus its continuous wavelet transform (CWT) has been successfully used in the field of fault diagnosis. The principle of scale selection in CWT is discussed. Based on genetic algorithm, an optimization strategy for the waveform parameters of the mother wavelet is proposed with wavelet entropy as the optimization target. Based on the optimized waveform parameters, the wavelet scalogram is used to analyze the simulated acoustic emission (AE) signal and real AE signal of rolling bearing. The results indicate that the proposed method is useful and efficient to improve the quality of CWT.展开更多
The development of computer controlled continuous rolling process calls for a mathematical expression that can express the inequality condition of "constant flow". Tension is the link of the continuous rolling proce...The development of computer controlled continuous rolling process calls for a mathematical expression that can express the inequality condition of "constant flow". Tension is the link of the continuous rolling process. From the condition of clynamic equilibrium, a differential equation of tension is given out. On the basis of the physical rules established from the industrial practice and experimental studies, the law of volume constancy, the linear relation of forward slip and tension, the state equation of continuous rolling, the formula of dynamic tension, and the formula of static tension have been obtained. These formulae reflect the functional relations between tensions, thickness, roll velocity, and time in the continuous rolling process. It is implied that the continuous rolling process is a gradually steady, controllable, and measurable dynamic system. An assumption of predicting the thickness of a steel plate using these tension formulae is also put forward.展开更多
The rheological behavior of aluminum alloy and its influencing factors in physical simulation of continuous roll casting process were studied by using a Gleeble-1500 thermal-mechanical simulation tester with a set of ...The rheological behavior of aluminum alloy and its influencing factors in physical simulation of continuous roll casting process were studied by using a Gleeble-1500 thermal-mechanical simulation tester with a set of special clamp system. The relationships between the flow stress and the strain rate in the deformation process of simulating roll casting experiment were obtained. The results show that four different characteristic stages exist in the temperature range of the whole rheological process. The first occurs when the temperature is higher than 600 ℃, which belongs to the creep deformation stage; the second occurs when the temperature lies in the range of 500600 ℃, and it can be regarded as the high temperature and low stress level deformation stage; the third occurs when the temperature decreases to the range of 300500 ℃, it is considered to be the middle stress level deformation stage; the last occurs when the temperature is less than 300 ℃ and the strain rate is less than 1.00 s -1, it belongs to middle stress level deformation stage. But when the strain rate is larger than 1.00 s -1,it belongs to the high stress level deformation stage. And the relative constitutive models suitable for the four different stages of continuous roll casting process were established through multivariate linear regression analysis of the experimental data.展开更多
Thickness,width,temperature,and profile are considered as control targets in process control of hot strip finishing rolling. The pre-calculated settings of the model information include rolling force,cooling water flo...Thickness,width,temperature,and profile are considered as control targets in process control of hot strip finishing rolling. The pre-calculated settings of the model information include rolling force,cooling water flow between stands,bending force,and roll shifting position. Without changing the load distribution,the interaction among thread speed,rolling force,rolling power,and cooling water flow between stands is comprehensively considered based on the quantifiable relationship among speed,force,and temperature. This paper proposes a full-length multi-point-setting model that uses the settings of strip head to combine the rolling speed diagram with the target finishing mill delivery temperature( FDT) to achieve the calculation of the control parameters along full length of strip. Traditional models cannot effectively predict rolling force of strip body or the maximum and minimum temperatures of FDT. It is also difficult for traditional models to suppress fluctuations in shape accuracy of full-length strip or improve the shape accuracy of the product. Calculation results show that the proposed full-length multi-point-setting model can provide the control parameters for temperature and rolling-force over full length of strip,predict the risk of rolling exceeding the equipment capability,and improve the shape accuracy and rolling stability of hot-rolled products.展开更多
In the process of steel tube production, continuous tube rolling is the foremost forming procedure and the critical step that decides the dimension precision and the surface quality. In the actual production of the 41...In the process of steel tube production, continuous tube rolling is the foremost forming procedure and the critical step that decides the dimension precision and the surface quality. In the actual production of the 4140 mm full floating mandrel mill in Steel Tube Branch in Baosteel, steel T91 was chosen to be the typical sample, self-made rolling force transducer and mandrel velocity testing equipment were used, and a series of comprehensive tests on rolling parameters including the rolling force and mandrel velocity were carried out. After the experiment, the friction state between rolling tube and mandrel was analyzed. The friction coefficient was calculated and the values of 0. 033 - 0. 074 in each mill were obtained. The friction coefficient increases obviously along the rolling direction.展开更多
A finite element model for coupled thermo-meehanical analysis has been developed in hot continuous rolling process for Inconel 718 alloy round rod with diameter of 45 mm. The stability of this alloy is discussed by in...A finite element model for coupled thermo-meehanical analysis has been developed in hot continuous rolling process for Inconel 718 alloy round rod with diameter of 45 mm. The stability of this alloy is discussed by integration of FEM and processing map reported in literatures. The result shows that the stability of Inconel 718 alloy is analyzed effectively during that process and good stability appears as the initial temperature is 960 ℃ and the initial velocity is from 0. 15 to 0.45 m · s^-1 or the initial temperature is 980 ℃ and the initial velocity is from 0. 15 to 0. 25 m · s^-1.展开更多
The development of continuous casting technology of electrical steel was analyzed. The technologies and products characteristics of conventional continuous casting, thin slab continuous casting and rolling, middle thi...The development of continuous casting technology of electrical steel was analyzed. The technologies and products characteristics of conventional continuous casting, thin slab continuous casting and rolling, middle thin slab continuous casting and rolling and twin-roll thin strip were compared. Conventional continuous casting technology was widely adopted in producing electrical steel, thin slab continuous casting and rolling and middle thin slab contin- uous casting and roiling technology industrialized electrical steel~ and study of twin-roll thin strip casting technology was focused on fundamental experiments.展开更多
It is expected that the welding hardfacing of continuous casting rolls has better welding performance and higher wear resistance. A new type of submerged-arc hardfacing flux-cored wire has been developed through nitro...It is expected that the welding hardfacing of continuous casting rolls has better welding performance and higher wear resistance. A new type of submerged-arc hardfacing flux-cored wire has been developed through nitrogen replacing part of carbon and addition of the nitrogen-fixing elements of niobium and titanium. And microstructure, degree of hardness and high-temperature wear resistance of its deposited metal samples were also investigated. It is found that the microstructure is martensite, residual austenite and carbonitride precipitates. As a result, the hardfacing metal with homogeneous distribution of very fine carbonitride particles had high hardness and excellent wear-re- sisting property during high-temperature wear, which could significantly extend the service life of continuous casting rolls.展开更多
Mechanical property prediction of hot rolled strip is one of the hotspots in material processing research. To avoid the local infinitesimal defect and slow constringency in pure BP algorithm, a kind of global optimiza...Mechanical property prediction of hot rolled strip is one of the hotspots in material processing research. To avoid the local infinitesimal defect and slow constringency in pure BP algorithm, a kind of global optimization algorithm-particle swarm optimization (PSO) is adopted. The algorithm is combined with the BP rapid training algorithm, and then, a kind of new neural network (NN) called PSO-BP NN is established. With the advantages of global optimization ability and the rapid constringency of the BP rapid training algorithm, the new algorithm fully shows the ability of nonlinear approach of multilayer feedforward network, improves the performance of NN, and provides a favorable basis for further online application of a comprehensive model.展开更多
文摘Based on a rolling model, the simulation of strip thickness during cold continuous rolling was made on the platform software Matrix. The simulation system combined the discrete system with continuous system for high speed and dynamics. Simulation parameters were calculated by differential element method, and the simulation results fit in with practical data very well.
基金Project(51175055) supported by the National Natural Science Foundation of ChinaProject(201102020) supported by the Natural Science Foundation of Liaoning Province,ChinaProject(2011BAE23B01) supported by the National Key Technology R&D Program of China
文摘A new copper strip production technology combined with continuous extrusion and rolling technology was proposed. The roll velocity must first be matched with the continuous extrusion velocity to achieve continuous extrusion and roll forming. The bite condition of continuous extrusion was determined, and the compatibility equation between the roll velocity and parameters such as the extrusion wheel velocity, reduction, and strip size was established through mechanical by plastic theoretical calculations. The finite element model of continuous extrusion and rolling was then established by using the TLJ400 continuous extrusion machine with a roll diameter of 200 mm. The relationship between the continuous extrusion and rolling velocities was determined through numerical simulations by software DEFORM-3D, and the accuracy of compatibility equation of velocity was verified.
文摘Three-dimensional finite element models were developed to analyze 304 stainless steel rod and wire hot continuous rolling process with the help of MSC.Marc software. The entire 30-pass deformation process and the actual parameters of production line were taken into account. Static and dynamic procedures were used to study the continuous rolling process with the aid of the thermo-mechanical coupled FEM of elastic-plasticity. The properties of billets, such as deformation, temperature field and rolling force, were mainly discussed. The simulation results of temperature agree well with the measured values. Comparisons of the analysis results obtained using static implicit method and dynamic implicit method were presented. It is shown that static implicit procedure is more accurate than dynamic implicit procedure and is able to simulate the rolling process with a lower speed, such as a roughing mill. Whereas, dynamic analysis shows a higher efficiency than static analysis and is fit for simulating the rolling process with a higher speed, such as a finishing mill.
文摘The influences of the dissimilarity in the roll speeds on the microstructure, texture and mechanical properties of 7075 aluminum plates produced via combined continuous casting and rolling(CCCR) process were investigated. Several experiments were conducted with three different upper/lower roll rotational speed ratios(ω/ω0, ω is the upper roll rotational speed and ω0 is the lower roll rotational speed), namely 1:1, 1:1.2 and 1:1.4. It was found that the greatest dissimilarity in the roll speed(ω/ω0=1:1.4) improved the yield strength and ultimate tensile strength of 7075 Al plate in the rolling direction by 41.5% and 21.9%, respectively. Moreover, at a roll speed ratio of ω/ω0=1:1.4, the average grain size was decreased by 36% whereas the mean hardness of the transverse cross-section of the finally rolled plate was increased by about 9.2%. Texture studies also revealed that the more the difference in the roll speeds was, the greater the isotropy and the hardness of the final product were. Nevertheless, conducting CCCR operation with different roll speeds resulted in about 6% reduction in the elongation of the deformed plate.
基金Item Sponsored by Youth Science Technology Elitist Foundation of Dalian Local Government (2001-122)
文摘An FE model was developed to study thermal behavior during the rod and wire hot continuous rolling process. The FE code MSC. Marc was used in the simulation using implicit static arithmetic. The whole rolling process of 30 passes was separated and simulated with several continuous 3D elastic-plastic FE models. A rigid pushing body and a data transfer technique were introduced into this model. The on-line experiments were conducted on 304 stainless steel and GCr15 steel hot continuous rolling process to prove the results of simulation by implicit static FEM. The results show that the temperature results of finite element simulations are in good agreement with experiments, which indicate that the FE model developed in this study is effective and efficient.
基金the financial supports from the National Natural Science Foundation of China (Key Program,Grant No.50634030)the Program for New Century Excellent Talents in University (Grant No.NCET-06-0285)
文摘A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3D elastic-plastic finite element method (FEM). The temperature of characteristic analysis points in the intermediate cross-section of the workpiece has been simulated at initial temperature ranging from 960 to 1000 ℃ and initial velocity in range of 0.15-0.55 m·s^-1. Based on finite element analysis and microstructural observation in cylindrical hot compression experiments, the appropriate hot continuous rolling technologies have been designed for rod products with different diameters. For a real rolling practice, the simulated surface temperature was examined and is in good agreement with the measured one.
文摘Combined with the technological characteristics of thin slab continuous rolling process (TSCR), dynamic recrystallization of an extremely coarse austenite of low carbon steel is studied by Thermecmaster-Z hot simulator. By the analysis of true stress-strain curves and the observation of microstructures at different deformation stages, the critical stress and critical strain are determined under different deformation conditions. The effect of Z parameter on dynamic recrystallization of coarse austenite is studied. The microstructure evolution in real production is also discussed.
基金the National Natural Science Foundation of China(No.52174359)the Key Research and Development Projects of Anhui Province(No.201904a05020068)。
文摘The flow stress behavior of GH4033 superalloy was determined by the hot compression tests at the temperatures of 1223-1473 K and the total strains of 0.6 with the strain rates of 0.001-30.0 s^(-1) by using cylindrical samples.The processing maps based on the dynamic material model(DMM)combined with the corresponding microstructure observations indicate the reasonable processing domain locating at the strain rates of 0.1-1.0 s^(-1) and the deformation temperature of 1273-1423 K.Meanwhile,the numerical simulation based on finite element model(FEM)described the variation of the effective strain,effective strain rate and the temperature for the core node,and unveiled the influence of the hot rolling parameters considering the initial temperature(T_(0))range of 1223-1473 K and the first-stand biting velocity(v_(0))range of 0.15-0.35 m·s^(-1).Furthermore,the deformation stability of GH4033 superalloy in the round rod hot continuous rolling(HCR)process is described and analyzed by coupling the three-dimensional(3-D)processing map,and the spatial trajectory lines were determined by the numerically simulated temperatures,the strains and the strain rates.Finally,the results show that the hot deformation stability of GH4033 can be achieved by the rolling process parameters located at T_(0)=1423 K and v_(0)=0.25 m·s^(-1).Additionally,the practical HCR processes as T_(0)=1423 K and v_(0)=0.15,0.25,0.35 m·s^(-1) were operated to verify the influence of the hot rolling parameters on the hot deformation stability by the microstructure observation of the final products.
基金This project is supported by National Natural Science Foundation of China (No. 50105007)Program for New Century Excellent Talents in University, China.
文摘Morlet wavelet is suitable to extract the impulse components of mechanical fault signals. And thus its continuous wavelet transform (CWT) has been successfully used in the field of fault diagnosis. The principle of scale selection in CWT is discussed. Based on genetic algorithm, an optimization strategy for the waveform parameters of the mother wavelet is proposed with wavelet entropy as the optimization target. Based on the optimized waveform parameters, the wavelet scalogram is used to analyze the simulated acoustic emission (AE) signal and real AE signal of rolling bearing. The results indicate that the proposed method is useful and efficient to improve the quality of CWT.
文摘The development of computer controlled continuous rolling process calls for a mathematical expression that can express the inequality condition of "constant flow". Tension is the link of the continuous rolling process. From the condition of clynamic equilibrium, a differential equation of tension is given out. On the basis of the physical rules established from the industrial practice and experimental studies, the law of volume constancy, the linear relation of forward slip and tension, the state equation of continuous rolling, the formula of dynamic tension, and the formula of static tension have been obtained. These formulae reflect the functional relations between tensions, thickness, roll velocity, and time in the continuous rolling process. It is implied that the continuous rolling process is a gradually steady, controllable, and measurable dynamic system. An assumption of predicting the thickness of a steel plate using these tension formulae is also put forward.
文摘The rheological behavior of aluminum alloy and its influencing factors in physical simulation of continuous roll casting process were studied by using a Gleeble-1500 thermal-mechanical simulation tester with a set of special clamp system. The relationships between the flow stress and the strain rate in the deformation process of simulating roll casting experiment were obtained. The results show that four different characteristic stages exist in the temperature range of the whole rheological process. The first occurs when the temperature is higher than 600 ℃, which belongs to the creep deformation stage; the second occurs when the temperature lies in the range of 500600 ℃, and it can be regarded as the high temperature and low stress level deformation stage; the third occurs when the temperature decreases to the range of 300500 ℃, it is considered to be the middle stress level deformation stage; the last occurs when the temperature is less than 300 ℃ and the strain rate is less than 1.00 s -1, it belongs to middle stress level deformation stage. But when the strain rate is larger than 1.00 s -1,it belongs to the high stress level deformation stage. And the relative constitutive models suitable for the four different stages of continuous roll casting process were established through multivariate linear regression analysis of the experimental data.
文摘Thickness,width,temperature,and profile are considered as control targets in process control of hot strip finishing rolling. The pre-calculated settings of the model information include rolling force,cooling water flow between stands,bending force,and roll shifting position. Without changing the load distribution,the interaction among thread speed,rolling force,rolling power,and cooling water flow between stands is comprehensively considered based on the quantifiable relationship among speed,force,and temperature. This paper proposes a full-length multi-point-setting model that uses the settings of strip head to combine the rolling speed diagram with the target finishing mill delivery temperature( FDT) to achieve the calculation of the control parameters along full length of strip. Traditional models cannot effectively predict rolling force of strip body or the maximum and minimum temperatures of FDT. It is also difficult for traditional models to suppress fluctuations in shape accuracy of full-length strip or improve the shape accuracy of the product. Calculation results show that the proposed full-length multi-point-setting model can provide the control parameters for temperature and rolling-force over full length of strip,predict the risk of rolling exceeding the equipment capability,and improve the shape accuracy and rolling stability of hot-rolled products.
文摘In the process of steel tube production, continuous tube rolling is the foremost forming procedure and the critical step that decides the dimension precision and the surface quality. In the actual production of the 4140 mm full floating mandrel mill in Steel Tube Branch in Baosteel, steel T91 was chosen to be the typical sample, self-made rolling force transducer and mandrel velocity testing equipment were used, and a series of comprehensive tests on rolling parameters including the rolling force and mandrel velocity were carried out. After the experiment, the friction state between rolling tube and mandrel was analyzed. The friction coefficient was calculated and the values of 0. 033 - 0. 074 in each mill were obtained. The friction coefficient increases obviously along the rolling direction.
基金Sponsored by National Natural Science Foundation of China(50634030)the Program of Education Ministry for New Century Excellent Talents in University(NECT-06-0285)
文摘A finite element model for coupled thermo-meehanical analysis has been developed in hot continuous rolling process for Inconel 718 alloy round rod with diameter of 45 mm. The stability of this alloy is discussed by integration of FEM and processing map reported in literatures. The result shows that the stability of Inconel 718 alloy is analyzed effectively during that process and good stability appears as the initial temperature is 960 ℃ and the initial velocity is from 0. 15 to 0.45 m · s^-1 or the initial temperature is 980 ℃ and the initial velocity is from 0. 15 to 0. 25 m · s^-1.
文摘The development of continuous casting technology of electrical steel was analyzed. The technologies and products characteristics of conventional continuous casting, thin slab continuous casting and rolling, middle thin slab continuous casting and rolling and twin-roll thin strip were compared. Conventional continuous casting technology was widely adopted in producing electrical steel, thin slab continuous casting and rolling and middle thin slab contin- uous casting and roiling technology industrialized electrical steel~ and study of twin-roll thin strip casting technology was focused on fundamental experiments.
基金Item Sponsored by National Natural Science Foundation of China (51101050)Fundamental Research Funds for Central Universities of China (2009B30214)Natural Science Foundation of Jiangsu Province of China (BK2011257)
文摘It is expected that the welding hardfacing of continuous casting rolls has better welding performance and higher wear resistance. A new type of submerged-arc hardfacing flux-cored wire has been developed through nitrogen replacing part of carbon and addition of the nitrogen-fixing elements of niobium and titanium. And microstructure, degree of hardness and high-temperature wear resistance of its deposited metal samples were also investigated. It is found that the microstructure is martensite, residual austenite and carbonitride precipitates. As a result, the hardfacing metal with homogeneous distribution of very fine carbonitride particles had high hardness and excellent wear-re- sisting property during high-temperature wear, which could significantly extend the service life of continuous casting rolls.
基金Natural Science Foundation of Anhui Provincial Education Depart ment of China (2006KJ080A)
文摘Mechanical property prediction of hot rolled strip is one of the hotspots in material processing research. To avoid the local infinitesimal defect and slow constringency in pure BP algorithm, a kind of global optimization algorithm-particle swarm optimization (PSO) is adopted. The algorithm is combined with the BP rapid training algorithm, and then, a kind of new neural network (NN) called PSO-BP NN is established. With the advantages of global optimization ability and the rapid constringency of the BP rapid training algorithm, the new algorithm fully shows the ability of nonlinear approach of multilayer feedforward network, improves the performance of NN, and provides a favorable basis for further online application of a comprehensive model.