An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filt...An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filters have been analyzed. Using linear modulating filters, we can obtain an identification model that is parameterized directly in continuous-time model parameters. By applying the results from discrete-time model identification to the obtained identification model, a continuous-time estimation method is developed. Considering the accuracy of parameter estimates, an instrumental variable (Ⅳ) method is proposed, and the design of modulating integral filter is discussed. The relationship between the accuracy of identification and the parameter of modulating filter is investigated, and some points about designing Gaussian wavelet modulating function are outlined. Finally, a simulation study is also included to verify the theoretical results.展开更多
The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deterior...The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection.展开更多
A fourth-order continuous-time sigma delta modulator with 20-MHz bandwidth, implemented in 130- nm CMOS technology is presented. The modulator is comprised of an active-RC operational-amplifier based loop filter, a 4-...A fourth-order continuous-time sigma delta modulator with 20-MHz bandwidth, implemented in 130- nm CMOS technology is presented. The modulator is comprised of an active-RC operational-amplifier based loop filter, a 4-bit internal quantizer and three current steering feedback DACs. A three-stage amplifier with low power is designed to satisfy the requirement of high dc gain and high gain-bandwidth product of the loop filter. Non-return- to-zero DAC pulse shaping is utilized to reduce clock jitter sensitivity. A special layout technique guarantees that the main feedback DAC reaches 12-bit match accuracy, avoiding the use of a dynamic element matching algorithm to induce excess loop delay. The experimental results demonstrate a 64.6-dB peak signal-to-noise ratio, and 66-dB dynamic range over a 20-MHz signal bandwidth when clocked at 480 MHz with 18-mW power consumption from a 1.2-V supply.展开更多
A 1-V third order one-bit continuous-time(CT) EA modulator is presented. Designed in the SMIC mixedsignal 0.13-μm CMOS process, the modulator utilizes active RC integrators to implement the loop filter. An efficien...A 1-V third order one-bit continuous-time(CT) EA modulator is presented. Designed in the SMIC mixedsignal 0.13-μm CMOS process, the modulator utilizes active RC integrators to implement the loop filter. An efficient circuit design methodology for the CT ZA modulator is proposed and verified. Low power dissipation is achieved through the use of two-stage class A/AB amplifiers. The presented modulator achieves 81.4-dB SNDR and 85-dB dynamic range in a 20-kHz bandwidth with an over sampling ratio of 128. The total power consumption of the modulator is only 60 μW from a 1-V power supply and the prototype occupies an active area of 0.12 mm^2.展开更多
In this paper, new complex band pass filter architecture for continuous time complex band pass sigma delta modulator is presented. In continuation of paper the modulator is designed for GPS and Galileo receiver. This ...In this paper, new complex band pass filter architecture for continuous time complex band pass sigma delta modulator is presented. In continuation of paper the modulator is designed for GPS and Galileo receiver. This modulator was simulated in standard 0.18 μm CMOS TSMC technology and has bandwidth of 2MHz and 4MHz for GPS and Galileo centered in 4.092 MHz. The dynamic range (DR) is 56.5/49 dB (GPS/Galileo) at sampling rate of 125 MHz. The modulator has power consumption of 4.1 mw with 3 V supply voltage.展开更多
A continuous-time ∑△ modulator with a third-order loop filter and a 3-bit quantizer is realized. The modulator is robust to the excess loop delay, clock jitter, and RC product variations. When designing the integra...A continuous-time ∑△ modulator with a third-order loop filter and a 3-bit quantizer is realized. The modulator is robust to the excess loop delay, clock jitter, and RC product variations. When designing the integrator, an op-amp with novel GBW extension structure, improving the linearity of the loop filter, is adopted. The prototype chip is designed in a 130 nm CMOS technology, targeting FM radio applications. The experimental results show that the prototype modulator achieves a 72 dB dynamic range and a 70.7 dB signal to noise and distortion ratio over a 500 kHz bandwidth with a 26 MHz clock, consuming 2.52 mW power from a 1.2 V supply.展开更多
SOQPSK-TG(Telemetry Group version of Shaped Offset Quadrature Phase Shift Key)具有良好的频率利用率和功率利用率,广泛应用于无线通信系统当中。在连续通信模式下,SOQPSK-TG信号的同步主要采用直接判决算法。为进一步降低算法复杂...SOQPSK-TG(Telemetry Group version of Shaped Offset Quadrature Phase Shift Key)具有良好的频率利用率和功率利用率,广泛应用于无线通信系统当中。在连续通信模式下,SOQPSK-TG信号的同步主要采用直接判决算法。为进一步降低算法复杂度,推导了基于线性相位近似的最大似然估计误差鉴别器,理论上分析了算法估计性能,并搭建了简化的接收模型。通过仿真证明了算法在估计性能上优于脉冲幅度调制方法,算法误码率接近理论性能。展开更多
基金This project was supported by China Postdoctoral Science Foundation (2003034466)Scientific Research Fund of Hunan Provincial Education Department (02B032).
文摘An approach to identification of linear continuous-time system is studied with modulating functions. Based on wavelet analysis theory, the multi-resolution modulating functions are designed, and the corresponding filters have been analyzed. Using linear modulating filters, we can obtain an identification model that is parameterized directly in continuous-time model parameters. By applying the results from discrete-time model identification to the obtained identification model, a continuous-time estimation method is developed. Considering the accuracy of parameter estimates, an instrumental variable (Ⅳ) method is proposed, and the design of modulating integral filter is discussed. The relationship between the accuracy of identification and the parameter of modulating filter is investigated, and some points about designing Gaussian wavelet modulating function are outlined. Finally, a simulation study is also included to verify the theoretical results.
文摘The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection.
基金Project Supported by the Important National Science & Technology Specific Projects of China(No.2009ZXO1O31-003-002)the State Key Laboratory Project of China(No.11MS002)
文摘A fourth-order continuous-time sigma delta modulator with 20-MHz bandwidth, implemented in 130- nm CMOS technology is presented. The modulator is comprised of an active-RC operational-amplifier based loop filter, a 4-bit internal quantizer and three current steering feedback DACs. A three-stage amplifier with low power is designed to satisfy the requirement of high dc gain and high gain-bandwidth product of the loop filter. Non-return- to-zero DAC pulse shaping is utilized to reduce clock jitter sensitivity. A special layout technique guarantees that the main feedback DAC reaches 12-bit match accuracy, avoiding the use of a dynamic element matching algorithm to induce excess loop delay. The experimental results demonstrate a 64.6-dB peak signal-to-noise ratio, and 66-dB dynamic range over a 20-MHz signal bandwidth when clocked at 480 MHz with 18-mW power consumption from a 1.2-V supply.
基金supported by the National High Technology Research and Development Program of China(No.2008AA010702)
文摘A 1-V third order one-bit continuous-time(CT) EA modulator is presented. Designed in the SMIC mixedsignal 0.13-μm CMOS process, the modulator utilizes active RC integrators to implement the loop filter. An efficient circuit design methodology for the CT ZA modulator is proposed and verified. Low power dissipation is achieved through the use of two-stage class A/AB amplifiers. The presented modulator achieves 81.4-dB SNDR and 85-dB dynamic range in a 20-kHz bandwidth with an over sampling ratio of 128. The total power consumption of the modulator is only 60 μW from a 1-V power supply and the prototype occupies an active area of 0.12 mm^2.
文摘In this paper, new complex band pass filter architecture for continuous time complex band pass sigma delta modulator is presented. In continuation of paper the modulator is designed for GPS and Galileo receiver. This modulator was simulated in standard 0.18 μm CMOS TSMC technology and has bandwidth of 2MHz and 4MHz for GPS and Galileo centered in 4.092 MHz. The dynamic range (DR) is 56.5/49 dB (GPS/Galileo) at sampling rate of 125 MHz. The modulator has power consumption of 4.1 mw with 3 V supply voltage.
文摘A continuous-time ∑△ modulator with a third-order loop filter and a 3-bit quantizer is realized. The modulator is robust to the excess loop delay, clock jitter, and RC product variations. When designing the integrator, an op-amp with novel GBW extension structure, improving the linearity of the loop filter, is adopted. The prototype chip is designed in a 130 nm CMOS technology, targeting FM radio applications. The experimental results show that the prototype modulator achieves a 72 dB dynamic range and a 70.7 dB signal to noise and distortion ratio over a 500 kHz bandwidth with a 26 MHz clock, consuming 2.52 mW power from a 1.2 V supply.
文摘SOQPSK-TG(Telemetry Group version of Shaped Offset Quadrature Phase Shift Key)具有良好的频率利用率和功率利用率,广泛应用于无线通信系统当中。在连续通信模式下,SOQPSK-TG信号的同步主要采用直接判决算法。为进一步降低算法复杂度,推导了基于线性相位近似的最大似然估计误差鉴别器,理论上分析了算法估计性能,并搭建了简化的接收模型。通过仿真证明了算法在估计性能上优于脉冲幅度调制方法,算法误码率接近理论性能。