With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With ...With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With this capability, ROSAR has extensive potential applications, such as self-navigation and self-landing. Moreover, it has many advantages if combined with the frequency modulated continuous wave (FMCW) technology. A novel geometric configuration and an imaging algorithm for helicopter-borne FMCW-ROSAR are proposed. Firstly, by per- forming the equivalent phase center principle, the separated trans- mitting and receiving antenna system is equalized to the case of system configuration with antenna for both transmitting and receiving signals. Based on this, the accurate two-dimensional spectrum is obtained and the Doppler frequency shift effect in- duced by the continuous motion of the platform during the long pulse duration is compensated. Next, the impacts of the velocity approximation error on the imaging algorithm are analyzed in de- tail, and the system parameters selection and resolution analysis are presented. The well-focused SAR image is then obtained by using the improved Omega-K algorithm incorporating the accurate compensation method for the velocity approximation error. FJnally, correctness of the analysis and effectiveness of the proposed al- gorithm are demonstrated through simulation results.展开更多
The conversion-efficiency for second-harmonic(SH)in optical fibers is significantly limited by extremely weak second-order nonlinearity of fused silica,and pulse pump lasers with high peak power are widely employed.He...The conversion-efficiency for second-harmonic(SH)in optical fibers is significantly limited by extremely weak second-order nonlinearity of fused silica,and pulse pump lasers with high peak power are widely employed.Here,we propose a simple strategy to efficiently realize the broadband and continuous wave(CW)pumped SH,by transferring a crystalline GaSe coating onto a microfiber with phase-matching diameter.In the experiment,high efficiency up to 0.08%W-1mm-1 is reached for a C-band pump laser.The high enough efficiency not only guarantees SH at a single frequency pumped by a CW laser,but also multi-frequencies mixing supported by three CW light sources.Moreover,broadband SH spectrum is also achieved under the pump of a superluminescent light-emitting diode source with a 79.3 nm bandwidth.The proposed scheme provides a beneficial method to the enhancement of various nonlinear parameter processes,development of quasi-monochromatic or broadband CW light sources at new wavelength regions.展开更多
A compact, efficient and high-power laser diode (LD) single-end-pumped Nd:YVO4 laser with continuous-wave emission at 1342 nm is reported. With a single crystal single-end-pumped by fibre-coupled LD array, an outpu...A compact, efficient and high-power laser diode (LD) single-end-pumped Nd:YVO4 laser with continuous-wave emission at 1342 nm is reported. With a single crystal single-end-pumped by fibre-coupled LD array, an output power of 7.36W is obtained from the laser cavity of concave-convex shape, corresponding to an optical-to-optical efficiency of 32.8%. The laser is operated in TEM00 mode with small rms amplitude noise of 0.3%. The influences of the Nd concentration, transmissivity of the output mirror and the cavity length on the output power have been studied experimentally.展开更多
We reduce the variable-coefficient higher-order nonlinear Schrodinger equation (VCHNLSE) into the constantcoefficient (CC) one. Based on the reduction transformation and solutions of CCHNLSE, we obtain analytical ...We reduce the variable-coefficient higher-order nonlinear Schrodinger equation (VCHNLSE) into the constantcoefficient (CC) one. Based on the reduction transformation and solutions of CCHNLSE, we obtain analytical soliton solutions embedded in the continuous wave background for the VCHNLSE. Then the excitation in advancement and sustainment of soliton arrays, and postponed disappearance and sustainment of the bright soliton embedded in the background are discussed in an exponential system.展开更多
In this article, two terahertz transmission imaging systems are built with a 2.52 THz continuous wave laser and two types of sensors. One is array scanning system using a 124×124 pyro-electric array camera as the...In this article, two terahertz transmission imaging systems are built with a 2.52 THz continuous wave laser and two types of sensors. One is array scanning system using a 124×124 pyro-electric array camera as the detector; the other is a point-wise scanning system utilizing a Golay cell as the detector. The imaging speed and quality is briefly analyzed. Terahertz (THz) imaging results demonstrate that the array scanning system has higher imaging speed with lower resolution. The point-wise scanning system has higher imaging quality with lower speed.展开更多
We experimentally investigate the spectral details of a picosecond supercontinuum pumped at 1064 nm and seeded by a weak continuous wave (~20000 times weaker than the pulse peak power) at several power levels in ph...We experimentally investigate the spectral details of a picosecond supercontinuum pumped at 1064 nm and seeded by a weak continuous wave (~20000 times weaker than the pulse peak power) at several power levels in photonic crystal fibers. Seeding at different wavelengths leads to different spectral details and the effects to the bandwidth of supercontinuum are also distinct. Spectra can be widened when seeded by a continuous wave at 1070 nm and narrowed by ~100 nm when seeded at 1080 nm. The influence is enhanced by increasing the average seeded power.展开更多
Objective:To observe and compare the clinical effects of different electroacupuncture waveforms on primary dysmenorrhea.Methods: This was a prospective,randomized,three-group,parallel-controlled trial.Participants wit...Objective:To observe and compare the clinical effects of different electroacupuncture waveforms on primary dysmenorrhea.Methods: This was a prospective,randomized,three-group,parallel-controlled trial.Participants with primary dysmenorrhea were randomly divided into dense-sparse wave,continuous wave,and discontinuous wave groups in a 1:1:1 ratio.Two lateral Ciliao(BL 32)points were used.All three groups started treatment 3–5 days before menstruation,once a day for six sessions per course of treatment,one course of treatment per menstrual cycle,and three menstrual cycles.The primary outcome measure was the proportion with an average visual analog scale(VAS)score reduction of≥50%from baseline for dysmenorrhea in the third menstrual cycle during treatment.The secondary outcome measures included changes in dysmenorrhea VAS scores,Cox Menstrual Symptom Scale scores and the proportion of patients taking analgesic drugs.Results: The proportion of cases where the average VAS score for dysmenorrhea decreased by≥50%from baseline in the third menstrual cycle was not statistically significant(P>.05).Precisely 30 min after acupuncture and regarding immediate analgesia on the most severe day of dysmenorrhea,there was a statistically significant difference in the dense-sparse wave group compared with the other two groups during the third menstrual cycle(P<.05).Additionally,there was a statistically significant difference between the dense-sparse wave and discontinuous wave groups 24 h after acupuncture(P<.05).Conclusions: Waveform electroacupuncture can alleviate primary dysmenorrhea and its related symptoms in patients.The three groups showed similar results in terms of short-and long-term analgesic efficacy and a reduction in the number of patients taking analgesic drugs.Regarding achieving immediate analgesia,the dense-sparse wave group was slightly better than the other two groups.展开更多
Background The safety and efficiency of transurethral laser resection of the prostate to treat benign prostatic hyperplasia have been verified. However, this method does still not manage large volume prostates efficie...Background The safety and efficiency of transurethral laser resection of the prostate to treat benign prostatic hyperplasia have been verified. However, this method does still not manage large volume prostates efficiently. To tackle this problem, we have designed a method of "transurethral dividing vaporesection of prostate" using a 2 micron continuous wave laser. The aim of this study was to evaluate the safety and efficiency of this method in the management of large prostates (〉80 ml).Methods In this study, 45 cases of benign prostatic hyperplasia with a median prostatic volume of (123.7±26.7) ml (range, 80.2-159.8 ml) were treated by the same surgeon under epidural anesthesia. During the surgery, superapubic catheters were needed, and saline solution was used for irrigation. First, the prostate was divided longitudinally into several parts from the bladder neck to the prostatic apex, and then gradually incised transversely chip by chip. Intraoperative blood transfusion rate, postoperative complications, maximum urinary flow rate, International Prostate Symptom Score and quality of life scores were recorded for statistical analysis using SPSS 16.0 software.Results Intraoperatively, no transurethral resection syndrome was observed, and no blood transfusions were needed.The resected prostatic chips were easily flushed out of the bladder through the resectoscope sheath without the use of a morcellator. Median vaporesection time was (95.0±13.2) minutes (range, 75-120 minutes), and the median retrieved and removed prostatic tissue were (25.2±5.1) g (range, 15.5-34.7 g) and (75.4±16.4) g (range, 43.8-106.1 g), respectively. Median catheter time and hospital stay were (3.3±0.9) days (range, 3-5 days) and (4.8±1.8) days (range, 3-9 days), respectively. After a follow-up of 6 to 12 months, two patients had stress urinary incontinence and three had anterior urethral strictures. Satisfactory improvement was seen in maximum urinary flow rate, International Prostate Symptom Score and quality of life scores.Conclusions This study showed that 2 micron laser vaporesection is a safe treatment for benign prostatic hyperplasia patients with large prostates, and the method of "dividing vaporesection" may help improve both surgical efficiency and patient outcomes.展开更多
The fabrication and characterization of distributed feedback(DFB) quantum cascade lasers emitting atλ≈8.5μm are reported.The first-order DFB grating structure was defined using the holographic lithography techniq...The fabrication and characterization of distributed feedback(DFB) quantum cascade lasers emitting atλ≈8.5μm are reported.The first-order DFB grating structure was defined using the holographic lithography technique.Reliable dynamic single-mode emission with a side-mode suppression ratio of 20 dB and a tuning coefficient of-0.277 cm^(-1)/K from 93 to 210 K is obtained in continuous wave mode by using high-reflectivity coating on the rear facet.The output power is over 100 mW at a temperature of 80 K.展开更多
A direction related polarizer was inserted into a ring laser cavity to eliminate one of the two eigen-modes as well as spatial hole burning of the gain medium in a bidirectional Er-doped fiber ring laser. Thus, a fibe...A direction related polarizer was inserted into a ring laser cavity to eliminate one of the two eigen-modes as well as spatial hole burning of the gain medium in a bidirectional Er-doped fiber ring laser. Thus, a fiber ring laser gyroscope (FRLG) operating in continuous wave was demonstrated. A beat signal of over 30-dB noise was observed and a good linear relation between the beat frequency shift and cavity rotation rate was obtained.展开更多
The model of linear frequency modulation continuous wave (LFMCW) applied in underwater detection and the method for the detection of echo signal and the estimation of target parameters were studied. By analyzing the...The model of linear frequency modulation continuous wave (LFMCW) applied in underwater detection and the method for the detection of echo signal and the estimation of target parameters were studied. By analyzing the heterodyne signal, an algorithm with the structure of heterodyne-Practional Fourier Transform (FRFT) was proposed. To reduce the computation of searching targets in a two-dimensional FRFT result, the heterodyne signal would be processed by FRFT at a specific order, after Radon-Ambiguity Transform (RAT) was applied to estimate the sweep rate of the signal. Simulations proved that the algorithm can eliminate the coupling phenomenon of distance and velocity of LFMCW, and estimate targets' parameters accurately. The lake trial results showed that the processing gain of LFMCW processed by the algorithm in this paper was 13 dB better than that of the LFM processed by matched filter. The research results indicated that the algorithm applied in LFMCW underwater detection was feasible and effective, and it could estimate targets' parameters accurately and obtain a good detection performance.展开更多
DNA tetrahedral nanostructures are considered to be uew nanocarriers because they can be precisely controlled and hold excellent penetration ability to the cellular membrane. Although the DNA tetrahedral nanostructure...DNA tetrahedral nanostructures are considered to be uew nanocarriers because they can be precisely controlled and hold excellent penetration ability to the cellular membrane. Although the DNA tetrahedral nanostructure is extensively studied in biology and medicine, its behavior in the cells with nanoscale resolution is not understood clearly. In this letter, we demonstrate superrcsolution fluorescence imaging of the distribution of DNA tetrahedral nanostructures in the cell with a simulated emission depletion (STED) microscope, which is built based on a conventional eonfocal microscope and can t)rovide a resolution of 70 nm.展开更多
Aim To develop a high speed and high resolution dynamic rangefinding device for the measurement of large distances.Methods The device was comprised of an ultrasonic transmitter and a receiver,and a receiver , and a co...Aim To develop a high speed and high resolution dynamic rangefinding device for the measurement of large distances.Methods The device was comprised of an ultrasonic transmitter and a receiver,and a receiver , and a continuous ultrasonic wave amplitude-modulated by a low- frequency acoustic signal was used. The rangefinding was achieved by detecting the phase difference between the transmitted and received ultrasonic signals. The design principle. hard- ware implementation , experimental results and performance analysis of the device are included. Results and Conclusion Experiments show that the accuracy of the device are included. within 1.5m while its dynamic data update rate can be up to 40kHz.展开更多
The nonlinear Schr6dinger equation (NLSE) with variable coefficients in blood vessels is discussed via an NLSE-based constructive method, and exact solutions are obtained including multi-soliton solutions with and w...The nonlinear Schr6dinger equation (NLSE) with variable coefficients in blood vessels is discussed via an NLSE-based constructive method, and exact solutions are obtained including multi-soliton solutions with and without continuous wave backgrounds. The dynamical behaviors of these soliton solutions are studied. The solitonic propagation behaviors such as restraint and sustainment on continuous wave background are discussed by altering the value of dispersion parameter δ. Moreover, the longitude controllable behaviors are also reported by modulating the dispersion parameter & These results are potential1y useful for future experiments in various blood vessels.展开更多
We present a continuous-wave singly-resonant optical parametric oscillator with 1.5% output coupling of the reso- nant signal wave, based on an angle-polished MgO-doped periodically poled lithium niobate (MgO:PPLN)...We present a continuous-wave singly-resonant optical parametric oscillator with 1.5% output coupling of the reso- nant signal wave, based on an angle-polished MgO-doped periodically poled lithium niobate (MgO:PPLN), pumped by a commercial Nd:YVO4 laser at 1064 nm. The output-coupled optical parametric oscillator delivers a maximum total output power of 4.19 W with 42.8% extraction efficiency, across a tuning range of 1717 nm in the near- and mid-infrared region. This indicates improvements of 1.87 W in output power, 19.1% in extraction efficiency and 213 nm in tuning range exten- sion in comparison with the optical parametric oscillator with no output coupling, while at the expense of increasing the oscillation threshold by a factor of - 2. Moreover, it is confirmed that the finite output coupling also contributes to the reduction of the thermal effects in crystal.展开更多
Continuous wave operation of a semiconductor laser diode based on five stacks of InAs quantum dots (QDs) embedded within strained InGaAs quantum wells as an active region is demonstrated. At room temperature, 355-mW...Continuous wave operation of a semiconductor laser diode based on five stacks of InAs quantum dots (QDs) embedded within strained InGaAs quantum wells as an active region is demonstrated. At room temperature, 355-mW output power at ground state of 1.33-1.35 μm for a 20-μm ridge-waveguide laser without facet coating is achieved. By optimizing the molecular beam epitaxy (MBE) growth conditions, the QD density per layer is raised to 4 × 10^10 cm^-2. The laser keeps lasing at ground state until the temperature reaches 65 ℃.展开更多
Photoacoustic Doppler flow measurement based on continuous wave laser excitation owns the merit of clearly presenting the Doppler power spectra.Extending this technique to dual wavelengths can gain the spectral inform...Photoacoustic Doppler flow measurement based on continuous wave laser excitation owns the merit of clearly presenting the Doppler power spectra.Extending this technique to dual wavelengths can gain the spectral information of the flow sample extra to the flow speed information.An experimental system with two laser diodes respectively operated at 405 nm and 660 nm wavelengths is built and the flow measurement with black and red dyed polystyrene beads is performed.The measured Doppler power spectra can vividly reflect the flow speed,the flow direction,as well as the bead color.Since it is straightforward to further apply the same principle to multiple wavelengths,we can expect this type of spectroscopic photoacoustic Doppler flow measurement will be developed in the near future which will be very useful for studying the metabolism of the slowly moving red blood cell inside microvessels.展开更多
The nonlinear photoresponse to a 1.56μm infrared continuous wave laser in semi-insulating (SI) galliu- marsenide (GaAs) is examined. The double-frequency absorption (DFA) is responsible for the nonlinear photor...The nonlinear photoresponse to a 1.56μm infrared continuous wave laser in semi-insulating (SI) galliu- marsenide (GaAs) is examined. The double-frequency absorption (DFA) is responsible for the nonlinear photoresponse based on the quadratic dependence of the photocurrent separately on the coupled optical power and bias voltage. The electric field-induced DFA remarkably affects the native DFA in SI GaAs. The surface electric field or the surface band-bending of SI GaAs significantly affects the magnitude variation of the Dhotocurrent and dark current展开更多
We demonstrate the efficient generation of coherent light in a four-level double-cascade atomic medium by continuous-wave low-intensity laser radiation. We derive the corresponding explicit analytical expressions for ...We demonstrate the efficient generation of coherent light in a four-level double-cascade atomic medium by continuous-wave low-intensity laser radiation. We derive the corresponding explicit analytical expressions for the generated four-wave mixing (FWM) field. Dependencies of the intensity of the generate FWM field on the propagation distance, on the input-wave intensity, and on the photon detuning are investigated. To conclude, we also give a brief discussion on the experimental realization of the proposed scheme.展开更多
A continuous-wave Nd:KGd(WO4)2 single-longitudinal-mode laser is demonstrated with Fabry-Perot etalons in a simple linear cavity.The thermal lens effect is dramatically lowered by propagating the laser beam along the...A continuous-wave Nd:KGd(WO4)2 single-longitudinal-mode laser is demonstrated with Fabry-Perot etalons in a simple linear cavity.The thermal lens effect is dramatically lowered by propagating the laser beam along the‘athermal’direction inside the laser crystal,which is very beneficial to removing the heat generated in the mode selection process.The maximum single-longitudinal-mode output power obtained is 64.8 mW at incident pump power of 4.7 W,corresponding to an optical conversion efficiency of 1.3%and a slope efficiency of 1.7%.展开更多
基金supported by the National Basic Research Program of China(2011CB707001)the Fundamental Research Funds for the Central Universities(106112015CDJXY500001CDJZR165505)
文摘With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With this capability, ROSAR has extensive potential applications, such as self-navigation and self-landing. Moreover, it has many advantages if combined with the frequency modulated continuous wave (FMCW) technology. A novel geometric configuration and an imaging algorithm for helicopter-borne FMCW-ROSAR are proposed. Firstly, by per- forming the equivalent phase center principle, the separated trans- mitting and receiving antenna system is equalized to the case of system configuration with antenna for both transmitting and receiving signals. Based on this, the accurate two-dimensional spectrum is obtained and the Doppler frequency shift effect in- duced by the continuous motion of the platform during the long pulse duration is compensated. Next, the impacts of the velocity approximation error on the imaging algorithm are analyzed in de- tail, and the system parameters selection and resolution analysis are presented. The well-focused SAR image is then obtained by using the improved Omega-K algorithm incorporating the accurate compensation method for the velocity approximation error. FJnally, correctness of the analysis and effectiveness of the proposed al- gorithm are demonstrated through simulation results.
基金supports from National Natural Science Foundation of China(No.61975166,11634010)Key Research and Development Program(No.2017YFA0303800).
文摘The conversion-efficiency for second-harmonic(SH)in optical fibers is significantly limited by extremely weak second-order nonlinearity of fused silica,and pulse pump lasers with high peak power are widely employed.Here,we propose a simple strategy to efficiently realize the broadband and continuous wave(CW)pumped SH,by transferring a crystalline GaSe coating onto a microfiber with phase-matching diameter.In the experiment,high efficiency up to 0.08%W-1mm-1 is reached for a C-band pump laser.The high enough efficiency not only guarantees SH at a single frequency pumped by a CW laser,but also multi-frequencies mixing supported by three CW light sources.Moreover,broadband SH spectrum is also achieved under the pump of a superluminescent light-emitting diode source with a 79.3 nm bandwidth.The proposed scheme provides a beneficial method to the enhancement of various nonlinear parameter processes,development of quasi-monochromatic or broadband CW light sources at new wavelength regions.
文摘A compact, efficient and high-power laser diode (LD) single-end-pumped Nd:YVO4 laser with continuous-wave emission at 1342 nm is reported. With a single crystal single-end-pumped by fibre-coupled LD array, an output power of 7.36W is obtained from the laser cavity of concave-convex shape, corresponding to an optical-to-optical efficiency of 32.8%. The laser is operated in TEM00 mode with small rms amplitude noise of 0.3%. The influences of the Nd concentration, transmissivity of the output mirror and the cavity length on the output power have been studied experimentally.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11005092)the Program for Innovative Research Team of Young Teachers of Zhejiang Agricultural and Forestry University, China (Grant No. 2009RC01)
文摘We reduce the variable-coefficient higher-order nonlinear Schrodinger equation (VCHNLSE) into the constantcoefficient (CC) one. Based on the reduction transformation and solutions of CCHNLSE, we obtain analytical soliton solutions embedded in the continuous wave background for the VCHNLSE. Then the excitation in advancement and sustainment of soliton arrays, and postponed disappearance and sustainment of the bright soliton embedded in the background are discussed in an exponential system.
文摘In this article, two terahertz transmission imaging systems are built with a 2.52 THz continuous wave laser and two types of sensors. One is array scanning system using a 124×124 pyro-electric array camera as the detector; the other is a point-wise scanning system utilizing a Golay cell as the detector. The imaging speed and quality is briefly analyzed. Terahertz (THz) imaging results demonstrate that the array scanning system has higher imaging speed with lower resolution. The point-wise scanning system has higher imaging quality with lower speed.
基金the National Natural Science Foundation of China(Grant Nos.61235008 and 61077076)the International Science&Technology Cooperation of China(Grant No.2012DFG11470)the Natural Science Foundation for Distinguished Young Scholars of Hunan Province,China(Grant No.12JJ1010)
文摘We experimentally investigate the spectral details of a picosecond supercontinuum pumped at 1064 nm and seeded by a weak continuous wave (~20000 times weaker than the pulse peak power) at several power levels in photonic crystal fibers. Seeding at different wavelengths leads to different spectral details and the effects to the bandwidth of supercontinuum are also distinct. Spectra can be widened when seeded by a continuous wave at 1070 nm and narrowed by ~100 nm when seeded at 1080 nm. The influence is enhanced by increasing the average seeded power.
基金supported by Technology Innovation Special Project of Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine.
文摘Objective:To observe and compare the clinical effects of different electroacupuncture waveforms on primary dysmenorrhea.Methods: This was a prospective,randomized,three-group,parallel-controlled trial.Participants with primary dysmenorrhea were randomly divided into dense-sparse wave,continuous wave,and discontinuous wave groups in a 1:1:1 ratio.Two lateral Ciliao(BL 32)points were used.All three groups started treatment 3–5 days before menstruation,once a day for six sessions per course of treatment,one course of treatment per menstrual cycle,and three menstrual cycles.The primary outcome measure was the proportion with an average visual analog scale(VAS)score reduction of≥50%from baseline for dysmenorrhea in the third menstrual cycle during treatment.The secondary outcome measures included changes in dysmenorrhea VAS scores,Cox Menstrual Symptom Scale scores and the proportion of patients taking analgesic drugs.Results: The proportion of cases where the average VAS score for dysmenorrhea decreased by≥50%from baseline in the third menstrual cycle was not statistically significant(P>.05).Precisely 30 min after acupuncture and regarding immediate analgesia on the most severe day of dysmenorrhea,there was a statistically significant difference in the dense-sparse wave group compared with the other two groups during the third menstrual cycle(P<.05).Additionally,there was a statistically significant difference between the dense-sparse wave and discontinuous wave groups 24 h after acupuncture(P<.05).Conclusions: Waveform electroacupuncture can alleviate primary dysmenorrhea and its related symptoms in patients.The three groups showed similar results in terms of short-and long-term analgesic efficacy and a reduction in the number of patients taking analgesic drugs.Regarding achieving immediate analgesia,the dense-sparse wave group was slightly better than the other two groups.
文摘Background The safety and efficiency of transurethral laser resection of the prostate to treat benign prostatic hyperplasia have been verified. However, this method does still not manage large volume prostates efficiently. To tackle this problem, we have designed a method of "transurethral dividing vaporesection of prostate" using a 2 micron continuous wave laser. The aim of this study was to evaluate the safety and efficiency of this method in the management of large prostates (〉80 ml).Methods In this study, 45 cases of benign prostatic hyperplasia with a median prostatic volume of (123.7±26.7) ml (range, 80.2-159.8 ml) were treated by the same surgeon under epidural anesthesia. During the surgery, superapubic catheters were needed, and saline solution was used for irrigation. First, the prostate was divided longitudinally into several parts from the bladder neck to the prostatic apex, and then gradually incised transversely chip by chip. Intraoperative blood transfusion rate, postoperative complications, maximum urinary flow rate, International Prostate Symptom Score and quality of life scores were recorded for statistical analysis using SPSS 16.0 software.Results Intraoperatively, no transurethral resection syndrome was observed, and no blood transfusions were needed.The resected prostatic chips were easily flushed out of the bladder through the resectoscope sheath without the use of a morcellator. Median vaporesection time was (95.0±13.2) minutes (range, 75-120 minutes), and the median retrieved and removed prostatic tissue were (25.2±5.1) g (range, 15.5-34.7 g) and (75.4±16.4) g (range, 43.8-106.1 g), respectively. Median catheter time and hospital stay were (3.3±0.9) days (range, 3-5 days) and (4.8±1.8) days (range, 3-9 days), respectively. After a follow-up of 6 to 12 months, two patients had stress urinary incontinence and three had anterior urethral strictures. Satisfactory improvement was seen in maximum urinary flow rate, International Prostate Symptom Score and quality of life scores.Conclusions This study showed that 2 micron laser vaporesection is a safe treatment for benign prostatic hyperplasia patients with large prostates, and the method of "dividing vaporesection" may help improve both surgical efficiency and patient outcomes.
基金Project supported by the National Research Projects of China(Nos60525406,60736031,60806018,60906026,2006CB604903, 2007AA03Z446,2009AA03Z403)
文摘The fabrication and characterization of distributed feedback(DFB) quantum cascade lasers emitting atλ≈8.5μm are reported.The first-order DFB grating structure was defined using the holographic lithography technique.Reliable dynamic single-mode emission with a side-mode suppression ratio of 20 dB and a tuning coefficient of-0.277 cm^(-1)/K from 93 to 210 K is obtained in continuous wave mode by using high-reflectivity coating on the rear facet.The output power is over 100 mW at a temperature of 80 K.
文摘A direction related polarizer was inserted into a ring laser cavity to eliminate one of the two eigen-modes as well as spatial hole burning of the gain medium in a bidirectional Er-doped fiber ring laser. Thus, a fiber ring laser gyroscope (FRLG) operating in continuous wave was demonstrated. A beat signal of over 30-dB noise was observed and a good linear relation between the beat frequency shift and cavity rotation rate was obtained.
文摘The model of linear frequency modulation continuous wave (LFMCW) applied in underwater detection and the method for the detection of echo signal and the estimation of target parameters were studied. By analyzing the heterodyne signal, an algorithm with the structure of heterodyne-Practional Fourier Transform (FRFT) was proposed. To reduce the computation of searching targets in a two-dimensional FRFT result, the heterodyne signal would be processed by FRFT at a specific order, after Radon-Ambiguity Transform (RAT) was applied to estimate the sweep rate of the signal. Simulations proved that the algorithm can eliminate the coupling phenomenon of distance and velocity of LFMCW, and estimate targets' parameters accurately. The lake trial results showed that the processing gain of LFMCW processed by the algorithm in this paper was 13 dB better than that of the LFM processed by matched filter. The research results indicated that the algorithm applied in LFMCW underwater detection was feasible and effective, and it could estimate targets' parameters accurately and obtain a good detection performance.
基金supported by the National Natural Science Foundation of China under Grand Nos.61008056,21227804,61078016,and 61378062)
文摘DNA tetrahedral nanostructures are considered to be uew nanocarriers because they can be precisely controlled and hold excellent penetration ability to the cellular membrane. Although the DNA tetrahedral nanostructure is extensively studied in biology and medicine, its behavior in the cells with nanoscale resolution is not understood clearly. In this letter, we demonstrate superrcsolution fluorescence imaging of the distribution of DNA tetrahedral nanostructures in the cell with a simulated emission depletion (STED) microscope, which is built based on a conventional eonfocal microscope and can t)rovide a resolution of 70 nm.
文摘Aim To develop a high speed and high resolution dynamic rangefinding device for the measurement of large distances.Methods The device was comprised of an ultrasonic transmitter and a receiver,and a receiver , and a continuous ultrasonic wave amplitude-modulated by a low- frequency acoustic signal was used. The rangefinding was achieved by detecting the phase difference between the transmitted and received ultrasonic signals. The design principle. hard- ware implementation , experimental results and performance analysis of the device are included. Results and Conclusion Experiments show that the accuracy of the device are included. within 1.5m while its dynamic data update rate can be up to 40kHz.
基金Supported by the Scientific Research Fund of Zhejiang Provincial Education Department under Grant No.Y201225803the National Natural Science Foundation of China under Grant No.11375007+2 种基金the Zhejiang Provincial Natural Science Foundation of China under Grant No.LY13F050006the Student Research Training Program under Grant No.201212007Undergraduate Innovative Base of Zhejiang A&F University
文摘The nonlinear Schr6dinger equation (NLSE) with variable coefficients in blood vessels is discussed via an NLSE-based constructive method, and exact solutions are obtained including multi-soliton solutions with and without continuous wave backgrounds. The dynamical behaviors of these soliton solutions are studied. The solitonic propagation behaviors such as restraint and sustainment on continuous wave background are discussed by altering the value of dispersion parameter δ. Moreover, the longitude controllable behaviors are also reported by modulating the dispersion parameter & These results are potential1y useful for future experiments in various blood vessels.
基金supported by the National Natural Science Foundation of China(Grant Nos.61308056,11204044,11232015,and 11072271)the Research Fund for the Doctoral Program of Higher Education of China(Grant Nos.20120171110005 and 20130171130003)+1 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.14lgpy07)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory,China(Grant No.ZHD201203)
文摘We present a continuous-wave singly-resonant optical parametric oscillator with 1.5% output coupling of the reso- nant signal wave, based on an angle-polished MgO-doped periodically poled lithium niobate (MgO:PPLN), pumped by a commercial Nd:YVO4 laser at 1064 nm. The output-coupled optical parametric oscillator delivers a maximum total output power of 4.19 W with 42.8% extraction efficiency, across a tuning range of 1717 nm in the near- and mid-infrared region. This indicates improvements of 1.87 W in output power, 19.1% in extraction efficiency and 213 nm in tuning range exten- sion in comparison with the optical parametric oscillator with no output coupling, while at the expense of increasing the oscillation threshold by a factor of - 2. Moreover, it is confirmed that the finite output coupling also contributes to the reduction of the thermal effects in crystal.
基金This work was supported by the Major State Key Basic Research Program (No. TG2000036603) the National "863" Program of China (No. 2002AA312080) and the National Natural Science Foundation of China (No. 60137020).
文摘Continuous wave operation of a semiconductor laser diode based on five stacks of InAs quantum dots (QDs) embedded within strained InGaAs quantum wells as an active region is demonstrated. At room temperature, 355-mW output power at ground state of 1.33-1.35 μm for a 20-μm ridge-waveguide laser without facet coating is achieved. By optimizing the molecular beam epitaxy (MBE) growth conditions, the QD density per layer is raised to 4 × 10^10 cm^-2. The laser keeps lasing at ground state until the temperature reaches 65 ℃.
基金This work is supported by the National Natural Science Foundation of China(Grant No.11774256)the Natural Science Foundation of Guangdong Province(Grant No.2018B03031104).
文摘Photoacoustic Doppler flow measurement based on continuous wave laser excitation owns the merit of clearly presenting the Doppler power spectra.Extending this technique to dual wavelengths can gain the spectral information of the flow sample extra to the flow speed information.An experimental system with two laser diodes respectively operated at 405 nm and 660 nm wavelengths is built and the flow measurement with black and red dyed polystyrene beads is performed.The measured Doppler power spectra can vividly reflect the flow speed,the flow direction,as well as the bead color.Since it is straightforward to further apply the same principle to multiple wavelengths,we can expect this type of spectroscopic photoacoustic Doppler flow measurement will be developed in the near future which will be very useful for studying the metabolism of the slowly moving red blood cell inside microvessels.
基金supported by the Natural Science Foundation of Jilin Province(Nos.201215019 and 201115026)the Collaborative Project of NSFC-RFBR(No.61111120097)the National Natural Science Foundation of China(Nos.60976037 and 61077026)
文摘The nonlinear photoresponse to a 1.56μm infrared continuous wave laser in semi-insulating (SI) galliu- marsenide (GaAs) is examined. The double-frequency absorption (DFA) is responsible for the nonlinear photoresponse based on the quadratic dependence of the photocurrent separately on the coupled optical power and bias voltage. The electric field-induced DFA remarkably affects the native DFA in SI GaAs. The surface electric field or the surface band-bending of SI GaAs significantly affects the magnitude variation of the Dhotocurrent and dark current
文摘We demonstrate the efficient generation of coherent light in a four-level double-cascade atomic medium by continuous-wave low-intensity laser radiation. We derive the corresponding explicit analytical expressions for the generated four-wave mixing (FWM) field. Dependencies of the intensity of the generate FWM field on the propagation distance, on the input-wave intensity, and on the photon detuning are investigated. To conclude, we also give a brief discussion on the experimental realization of the proposed scheme.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674273 and 61805209).
文摘A continuous-wave Nd:KGd(WO4)2 single-longitudinal-mode laser is demonstrated with Fabry-Perot etalons in a simple linear cavity.The thermal lens effect is dramatically lowered by propagating the laser beam along the‘athermal’direction inside the laser crystal,which is very beneficial to removing the heat generated in the mode selection process.The maximum single-longitudinal-mode output power obtained is 64.8 mW at incident pump power of 4.7 W,corresponding to an optical conversion efficiency of 1.3%and a slope efficiency of 1.7%.