This paper discusses how the infinite set of real numbers between 0 and 1 could be represented by a countably infinite tree structure which would avoid Cantor’s diagonalization argument that the set of real numbers i...This paper discusses how the infinite set of real numbers between 0 and 1 could be represented by a countably infinite tree structure which would avoid Cantor’s diagonalization argument that the set of real numbers is not countably infinite. Likewise, countably infinite tree structures could represent all real numbers, and all points in any number of dimensions in multi-dimensional spaces. The objective of this paper is not to overturn previous research based on Cantor’s argument, but to suggest that this situation may be treated as a definitional or axiomatic choice. This paper proposes a “non-Cantorian” branch of cardinality theory, representing all these infinities with countably infinite tree structures. This approach would be consistent with the Continuum Hypothesis.展开更多
The more unambiguous statement of the P versus NP problem and the judgement of its hardness, are the key ways to find the full proof of the P versus NP problem. There are two sub-problems in the P versus NP problem. T...The more unambiguous statement of the P versus NP problem and the judgement of its hardness, are the key ways to find the full proof of the P versus NP problem. There are two sub-problems in the P versus NP problem. The first is the classifications of different mathematical problems (languages), and the second is the distinction between a non-deterministic Turing machine (NTM) and a deterministic Turing machine (DTM). The process of an NTM can be a power set of the corresponding DTM, which proves that the states of an NTM can be a power set of the corresponding DTM. If combining this viewpoint with Cantor's theorem, it is shown that an NTM is not equipotent to a DTM. This means that "generating the power set P(A) of a set A" is a non-canonical example to support that P is not equal to NP.展开更多
文摘This paper discusses how the infinite set of real numbers between 0 and 1 could be represented by a countably infinite tree structure which would avoid Cantor’s diagonalization argument that the set of real numbers is not countably infinite. Likewise, countably infinite tree structures could represent all real numbers, and all points in any number of dimensions in multi-dimensional spaces. The objective of this paper is not to overturn previous research based on Cantor’s argument, but to suggest that this situation may be treated as a definitional or axiomatic choice. This paper proposes a “non-Cantorian” branch of cardinality theory, representing all these infinities with countably infinite tree structures. This approach would be consistent with the Continuum Hypothesis.
文摘The more unambiguous statement of the P versus NP problem and the judgement of its hardness, are the key ways to find the full proof of the P versus NP problem. There are two sub-problems in the P versus NP problem. The first is the classifications of different mathematical problems (languages), and the second is the distinction between a non-deterministic Turing machine (NTM) and a deterministic Turing machine (DTM). The process of an NTM can be a power set of the corresponding DTM, which proves that the states of an NTM can be a power set of the corresponding DTM. If combining this viewpoint with Cantor's theorem, it is shown that an NTM is not equipotent to a DTM. This means that "generating the power set P(A) of a set A" is a non-canonical example to support that P is not equal to NP.