Weakly bound states often occur in nuclear physics.To precisely understand their properties,the coupling to the continuum should be worked out explicitly.As the first step,we use a simple nuclear model in the continuu...Weakly bound states often occur in nuclear physics.To precisely understand their properties,the coupling to the continuum should be worked out explicitly.As the first step,we use a simple nuclear model in the continuum and on a lattice to investigate the influence of a third particle on a loosely bound state of a particle and a heavy core.Our approach is consistent with the Lüscher formalism.展开更多
In this work,the effect of a magnetic island on Alfvén waves is studied.A physical model is established wherein Alfvén waves propagate in the presence of a magnetic island in a cylindrical geometry.The struc...In this work,the effect of a magnetic island on Alfvén waves is studied.A physical model is established wherein Alfvén waves propagate in the presence of a magnetic island in a cylindrical geometry.The structure of the Alfvén wave continuum is calculated by considering only the coupling caused by the periodicity in the helical angle of the magnetic island.The results show that the magnetic island can induce an upshift in the Alfvén continuum.Moreover,the coupling between different branches of the continuous spectrum becomes more significant with increasing continuum mode numbers near the boundary of the magnetic island.展开更多
We present a systematic study of 6Li elastic scattering and total reaction cross sections at incident energies around the Coulomb barrier within the continuum discretized coupled-channels(CDCC)framework,where 6Li is t...We present a systematic study of 6Li elastic scattering and total reaction cross sections at incident energies around the Coulomb barrier within the continuum discretized coupled-channels(CDCC)framework,where 6Li is treated in anα+d two-body model.Collisions with 27Al,64Zn,138Ba,and 208Pa are analyzed.The microscopic optical potentials(MOP)based on Skyrme nucleon-nucleon interaction forαand d are adopted in CDCC calculations and satisfactory agreement with the experimental data is obtained without any adjustment on MOPs.For comparison,αand d global phenomenological optical potentials(GOP)are also used in CDCC analysis and a reduction of no less than 50%on the surface imaginary part of deuteron GOP is required for describing the data.In all cases,the 6Li breakup effect is significant and provides repulsive correction to the folding model potential.The reduction on the surface imaginary part of GOP of deuteron reveals a strong suppression of the reaction probability of deuteron as a component of 6Li when compared with that of a free deuteron.Further investigation is performed by considering the d breakup process equivalently within the dynamic polarization potential approach,and the results show that d behaves in a manner similar to a tightly bound nucleus in 6Li induced reactions.展开更多
We provide an investigation of the spectroscopic factor of resonance states in A=5-8 nuclei,utilizing the Gamow shell model(GSM).Within the GSM,the configuration mixing is taken into account exactly with the shell mod...We provide an investigation of the spectroscopic factor of resonance states in A=5-8 nuclei,utilizing the Gamow shell model(GSM).Within the GSM,the configuration mixing is taken into account exactly with the shell model framework,and the continuum coupling is addressed via the complex-energy Berggren ensemble,which treats bound,resonance,and non-resonant continuum single-particle states on an equal footing.As a result,both the configuration mixing and continuum coupling are meticulously considered in the GSM.We first calculate the low-lying states of helium isotopes and isotones with the GSM,and the results are compared with that of ab initio no-core shell model(NCSM)calculations.The results indicate that GSM can reproduce the low-lying resonance states more accurately than the NCSM.Following this,we delve into the spectroscopic factors of the resonance states as computed through both GSM and NCSM,concurrently conducting systematic calculations of overlap functions pertinent to these resonance states.Finally,the calculated overlap function and spectroscopic factor of6He(01+)■νp3/2→^(7)He(3/2_(1)-)with GSM are compared with the results from ab initio NCSM,variational Monte Carlo,and Green’s function Monte Carlo calculations,as well as available experimental data.The results assert that wave function asymptotes can only be reproduced in GSM,where resonance and continuum coupling are precisely addressed.展开更多
Ab initio approaches are among the most advanced models to solve the nuclear many-body problem.In particular,the no-core-shell model and many-body perturbation theory have been recently extended to the Gamow shell mod...Ab initio approaches are among the most advanced models to solve the nuclear many-body problem.In particular,the no-core-shell model and many-body perturbation theory have been recently extended to the Gamow shell model framework,where the harmonic oscillator basis is replaced by a basis bearing bound,resonance and scattering states,i.e.the Berggren basis.As continuum coupling is included at basis level and as configuration mixing takes care of internucleon correlations,halo and resonance nuclei can be properly described with the Gamow shell model.The development of the no-core Gamow shell model and the introduction of the■-box method in the Gamow shell model,as well as their first ab initio applications,will be reviewed in this paper.Peculiarities compared to models using harmonic oscillator bases will be shortly described.The current power and limitations of ab initio Gamow shell model will also be discussed,as well as its potential for future applications.展开更多
We present a novel efficient implementation of the flexible boundary condition(FBC)method,initially proposed by Sinclair et al.,for large single-periodic problems.Efficiency is primarily achieved by constructing a hie...We present a novel efficient implementation of the flexible boundary condition(FBC)method,initially proposed by Sinclair et al.,for large single-periodic problems.Efficiency is primarily achieved by constructing a hierarchical matrix(H-matrix)representation of the periodic Green matrix,reducing the complexity for updating the boundary conditions of the atomistic problem from quadratic to almost linear in the number of pad atoms.In addition,our implementation is supported by various other tools from numerical analysis,such as a residual-based transformation of the boundary conditions to accelerate the convergence.We assess the method for a comprehensive set of examples,relevant for predicting mechanical properties,such as yield strength or ductility,including dislocation bow-out,dislocation-precipitate interaction,and dislocation cross-slip.The main result of our analysis is that the FBC method is robust,easy-to-use,and up to two orders of magnitude more efficient than the current state-of-the-art method for this class of problems,the periodic array of dislocations(PAD)method,in terms of the required number of per-atom force computations when both methods give similar accuracy.This opens new prospects for large-scale atomistic simulations—without having to worry about spurious image effects that plague classical boundary conditions.展开更多
基金financial support from the Deutsche Forschungsgemeinschaft (SFB/TRR 110,"Symmetries and the Emergence of Structure in QCD",grant no. TRR 110)by the Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (PIFI)(2018DM0034)+1 种基金by Volkswagen Stiftung (93562)by the Fundamental Research Funds for the Central Universities
文摘Weakly bound states often occur in nuclear physics.To precisely understand their properties,the coupling to the continuum should be worked out explicitly.As the first step,we use a simple nuclear model in the continuum and on a lattice to investigate the influence of a third particle on a loosely bound state of a particle and a heavy core.Our approach is consistent with the Lüscher formalism.
基金supported by the ITER Project of Ministry of Science and Technology(No.2022YFE03080002)National Natural Science Foundation of China(Nos.11605088 and 12005100)+5 种基金the Key Scientific Research Program of Education Department of Hunan Province(Nos.20A417 and 20A439)the National Magnetic Confinement Fusion Science Program of China(No.2015GB110002)the Hunan Provincial Natural Science Foundation of China(No.2017JJ3268)the International Cooperation Base Project of Hunan Province of China(No.2018WK4009)the Key Laboratory of Magnetic Confinement Nuclear Fusion Research in Hengyang(No.2018KJ108)the PhD Start-Up Fund of University of South China(No.2017XQD08)。
文摘In this work,the effect of a magnetic island on Alfvén waves is studied.A physical model is established wherein Alfvén waves propagate in the presence of a magnetic island in a cylindrical geometry.The structure of the Alfvén wave continuum is calculated by considering only the coupling caused by the periodicity in the helical angle of the magnetic island.The results show that the magnetic island can induce an upshift in the Alfvén continuum.Moreover,the coupling between different branches of the continuous spectrum becomes more significant with increasing continuum mode numbers near the boundary of the magnetic island.
基金Supported by the National Natural Science Foundation of China(U2067205)。
文摘We present a systematic study of 6Li elastic scattering and total reaction cross sections at incident energies around the Coulomb barrier within the continuum discretized coupled-channels(CDCC)framework,where 6Li is treated in anα+d two-body model.Collisions with 27Al,64Zn,138Ba,and 208Pa are analyzed.The microscopic optical potentials(MOP)based on Skyrme nucleon-nucleon interaction forαand d are adopted in CDCC calculations and satisfactory agreement with the experimental data is obtained without any adjustment on MOPs.For comparison,αand d global phenomenological optical potentials(GOP)are also used in CDCC analysis and a reduction of no less than 50%on the surface imaginary part of deuteron GOP is required for describing the data.In all cases,the 6Li breakup effect is significant and provides repulsive correction to the folding model potential.The reduction on the surface imaginary part of GOP of deuteron reveals a strong suppression of the reaction probability of deuteron as a component of 6Li when compared with that of a free deuteron.Further investigation is performed by considering the d breakup process equivalently within the dynamic polarization potential approach,and the results show that d behaves in a manner similar to a tightly bound nucleus in 6Li induced reactions.
基金supported by the National Natural Science Foundation of China(Grant Nos.12205340,12175281,and 11975282)the Gansu Natural Science Foundation(Grant No.22JR5RA123)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB34000000)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB15)the State Key Laboratory of Nuclear Physics and TechnologyPeking University(Grant No.NPT2020KFY13)。
文摘We provide an investigation of the spectroscopic factor of resonance states in A=5-8 nuclei,utilizing the Gamow shell model(GSM).Within the GSM,the configuration mixing is taken into account exactly with the shell model framework,and the continuum coupling is addressed via the complex-energy Berggren ensemble,which treats bound,resonance,and non-resonant continuum single-particle states on an equal footing.As a result,both the configuration mixing and continuum coupling are meticulously considered in the GSM.We first calculate the low-lying states of helium isotopes and isotones with the GSM,and the results are compared with that of ab initio no-core shell model(NCSM)calculations.The results indicate that GSM can reproduce the low-lying resonance states more accurately than the NCSM.Following this,we delve into the spectroscopic factors of the resonance states as computed through both GSM and NCSM,concurrently conducting systematic calculations of overlap functions pertinent to these resonance states.Finally,the calculated overlap function and spectroscopic factor of6He(01+)■νp3/2→^(7)He(3/2_(1)-)with GSM are compared with the results from ab initio NCSM,variational Monte Carlo,and Green’s function Monte Carlo calculations,as well as available experimental data.The results assert that wave function asymptotes can only be reproduced in GSM,where resonance and continuum coupling are precisely addressed.
基金supported by the National Natural Science Foundation of China under Grants No.12175281,11835001,11921006,12035001,and 11975282the State Key Laboratory of Nuclear Physics and Technology,Peking University under Grant No.NPT2020ZZ01 and NPT2020KFY13+3 种基金the National Key R&D Program of China under Grant No.2018YFA0404401the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No.XDB34000000the Key Research Program of the Chinese Academy of Sciences under Grant No.XDPB15the CUSTIPEN(China-U.S.Theory Institute for Physics with Exotic Nuclei)funded by the U.S.Department of Energy,Office of Science under Grant No.desc0009971
文摘Ab initio approaches are among the most advanced models to solve the nuclear many-body problem.In particular,the no-core-shell model and many-body perturbation theory have been recently extended to the Gamow shell model framework,where the harmonic oscillator basis is replaced by a basis bearing bound,resonance and scattering states,i.e.the Berggren basis.As continuum coupling is included at basis level and as configuration mixing takes care of internucleon correlations,halo and resonance nuclei can be properly described with the Gamow shell model.The development of the no-core Gamow shell model and the introduction of the■-box method in the Gamow shell model,as well as their first ab initio applications,will be reviewed in this paper.Peculiarities compared to models using harmonic oscillator bases will be shortly described.The current power and limitations of ab initio Gamow shell model will also be discussed,as well as its potential for future applications.
基金Financial support from the Fonds National Suisse(FNS),Switzerland,(project 191680)is highly acknowledged.
文摘We present a novel efficient implementation of the flexible boundary condition(FBC)method,initially proposed by Sinclair et al.,for large single-periodic problems.Efficiency is primarily achieved by constructing a hierarchical matrix(H-matrix)representation of the periodic Green matrix,reducing the complexity for updating the boundary conditions of the atomistic problem from quadratic to almost linear in the number of pad atoms.In addition,our implementation is supported by various other tools from numerical analysis,such as a residual-based transformation of the boundary conditions to accelerate the convergence.We assess the method for a comprehensive set of examples,relevant for predicting mechanical properties,such as yield strength or ductility,including dislocation bow-out,dislocation-precipitate interaction,and dislocation cross-slip.The main result of our analysis is that the FBC method is robust,easy-to-use,and up to two orders of magnitude more efficient than the current state-of-the-art method for this class of problems,the periodic array of dislocations(PAD)method,in terms of the required number of per-atom force computations when both methods give similar accuracy.This opens new prospects for large-scale atomistic simulations—without having to worry about spurious image effects that plague classical boundary conditions.