为提升传统目标轮廓识别算法的实时性,提出一种基于动态时间规整(dynamic time warping, DTW)的轮廓特征目标识别算法。该算法将质心高度增量特征描述符与DTW相似性度量算法相结合,首先对目标轮廓均匀提取采样点,并对目标图像以及模板...为提升传统目标轮廓识别算法的实时性,提出一种基于动态时间规整(dynamic time warping, DTW)的轮廓特征目标识别算法。该算法将质心高度增量特征描述符与DTW相似性度量算法相结合,首先对目标轮廓均匀提取采样点,并对目标图像以及模板图像轮廓点的质心高度增量特征进行提取,然后使用DTW算法寻找规整路径的方法对目标图像以及模板图像的特征矩阵进行相似性度量,最后定义形状复杂度,同时联合翻转目标的二次匹配得出最终识别结果。实验结果表明,所提出算法在MPEG-7、Kimia99数据集中对待测形状能够在保证识别率优于大多数常见的传统目标识别算法的同时提升目标识别的实时性。展开更多
针对基于差分隐私的K-means聚类存在数据效用差的问题,基于乌鸦搜索和轮廓系数提出了一个隐私保护的聚类算法(privacy preserving clustering algorithm based on crow search, CS-PCA)。该算法一方面利用轮廓系数对每次迭代中每个簇的...针对基于差分隐私的K-means聚类存在数据效用差的问题,基于乌鸦搜索和轮廓系数提出了一个隐私保护的聚类算法(privacy preserving clustering algorithm based on crow search, CS-PCA)。该算法一方面利用轮廓系数对每次迭代中每个簇的聚类效果进行评估,根据聚类效果添加不同数量的噪声,并利用聚类合并思想降低噪声对聚类的影响;另一方面利用乌鸦搜索对差分隐私的K-means隐私保护聚类算法中初始质心的选择进行优化,防止算法陷入局部最优。实验结果表明,CS-PCA算法的聚类有效性更高,并且同样适用于大规模数据。从整体上看,随着隐私预算的不断增大,CS-PCA算法的F-measure值分别比DP-KCCM和PADC算法高了0~281.3312%和4.5876%~470.3704%。在相同的隐私预算下,CS-PCA算法在绝大多数情况下聚类结果可用性优于对比算法。展开更多
文摘为提升传统目标轮廓识别算法的实时性,提出一种基于动态时间规整(dynamic time warping, DTW)的轮廓特征目标识别算法。该算法将质心高度增量特征描述符与DTW相似性度量算法相结合,首先对目标轮廓均匀提取采样点,并对目标图像以及模板图像轮廓点的质心高度增量特征进行提取,然后使用DTW算法寻找规整路径的方法对目标图像以及模板图像的特征矩阵进行相似性度量,最后定义形状复杂度,同时联合翻转目标的二次匹配得出最终识别结果。实验结果表明,所提出算法在MPEG-7、Kimia99数据集中对待测形状能够在保证识别率优于大多数常见的传统目标识别算法的同时提升目标识别的实时性。
文摘针对基于差分隐私的K-means聚类存在数据效用差的问题,基于乌鸦搜索和轮廓系数提出了一个隐私保护的聚类算法(privacy preserving clustering algorithm based on crow search, CS-PCA)。该算法一方面利用轮廓系数对每次迭代中每个簇的聚类效果进行评估,根据聚类效果添加不同数量的噪声,并利用聚类合并思想降低噪声对聚类的影响;另一方面利用乌鸦搜索对差分隐私的K-means隐私保护聚类算法中初始质心的选择进行优化,防止算法陷入局部最优。实验结果表明,CS-PCA算法的聚类有效性更高,并且同样适用于大规模数据。从整体上看,随着隐私预算的不断增大,CS-PCA算法的F-measure值分别比DP-KCCM和PADC算法高了0~281.3312%和4.5876%~470.3704%。在相同的隐私预算下,CS-PCA算法在绝大多数情况下聚类结果可用性优于对比算法。