The internal residual stress within a TC 17 titanium alloy joint welded by linear friction welding (LFW) was measured by the contour method, which is a relatively new and destructive technique to obtain a full map o...The internal residual stress within a TC 17 titanium alloy joint welded by linear friction welding (LFW) was measured by the contour method, which is a relatively new and destructive technique to obtain a full map of internal residual stress. The specimen was first cut into two parts; the out-of-plane displacement contour formed by the release of the residual stress was then measured; finally, taking the measured contour of the cut plane as the boundary conditions, a linear elastic finite element analysis was carried out to calculate the corresponding distribution of residual stress normal to the cut plane. The internal stress distribution of the TC 17 titanium alloy LFWjoint was also analyzed. The results show that the tensile residual stress in the TC17 LFW weld is mainly present within a region about 12 mm from the weld centerline; the peak tensile residual stress occurs at the weld centerline and reaches 360 MPa (about one third of the yield strength of TC17 alloy); within the weld zone of the TC17 LFW weld, the through-thickness stress is not uniform, and the internal stress is larger than that near the top or bottom surface.展开更多
The fish cage design requires accurate predictions of long-term extreme loads and responses.Compared with the time-consuming full long-term analysis method integrating all the probability distribution of the short-ter...The fish cage design requires accurate predictions of long-term extreme loads and responses.Compared with the time-consuming full long-term analysis method integrating all the probability distribution of the short-term extremes,the environmental contour method gains much attention in predicting the long-term extreme values due to the less computational effort.This paper investigates the long-term extreme response of a fish cage using the environmental contour method.The fish cage is numerically simulated based on the lumped-mass method and the curved beam theory.Based on the one-dimensional(1D)and two-dimensional(2D)environmental contour,the extreme responses,including the surge and heave motions,mooring force,and vertical bending of the floater,are predicted for different return periods and compared with the full long-term analysis results.Results indicate that the 1D method greatly underestimates the extreme values.The 2D environmental contour method with a higher percentile level,namely90%,provides reasonable estimations and seems to be suitable for the long-term value analysis.Sensitivity studies show that the mooring arrangement and the bending stiffness have great effects on the bending moment and the mooring force and the mooring line pre-tension has minor effects on the fish cage response.展开更多
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-...This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.展开更多
A gradient-based optimization method for producing a contoured beam by using a single-fed reflector antenna is presented. First, a quick and accurate pattern approximation formula based on physical optics(PO) is adopt...A gradient-based optimization method for producing a contoured beam by using a single-fed reflector antenna is presented. First, a quick and accurate pattern approximation formula based on physical optics(PO) is adopted to calculate the gradients of the directivity with respect to reflector's nodal displacements. Because the approximation formula is a linear function of nodal displacements, the gradient can be easily derived. Then, the method of the steepest descent is adopted, and an optimization iteration procedure is proposed. The iteration procedure includes two loops: an inner loop and an outer loop. In the inner loop, the gradient and pattern are calculated by matrix operation, which is very fast by using the pre-calculated data in the outer loop. In the outer loop, the ideal terms used in the inner loop to calculate the gradient and pattern are updated, and the real pattern is calculated by the PO method. Due to the high approximation accuracy, when the outer loop is performed once, the inner loop can be performed many times, which will save much time because the integration is replaced by matrix operation. In the end, a contoured beam covering the continental United States(CONUS) is designed, and simulation results show the effectiveness of the proposed algorithm.展开更多
Jacket-type offshore platforms are widely used for oil, gas field, and energy development in shallow water. The design of a jacket structure is highly dependent on target environmental variables. This study focuses on...Jacket-type offshore platforms are widely used for oil, gas field, and energy development in shallow water. The design of a jacket structure is highly dependent on target environmental variables. This study focuses on a strategy to estimate design loads for offshore jacket structures based on an environmental contour approach. In addition to the popular conditional distribution model, various classes of bivariate copulas are adopted to construct joint distributions of environmental variables. Analytical formulations of environmental contours based on various models are presented and discussed in this study. The design loads are examined by dynamic response analysis of jacket platform. Results suggest that the conditional model is not recommended for use in estimating design loads in sampling locations due to poor fitting results. Independent copula produces conservative design loads and the extreme response obtained using the conditional model are smaller than those determined by copulas. The suitability of a model for contour construction varies with the origin of wave data. This study provides a reference for the design load estimation of jacket structures and offers an alternative procedure to determine the design criteria for offshore structures.展开更多
This paper discusses the application of the boundary contour method fo r resolving plate bending problems. The exploitation of the integrand divergence free property of the plate bending boundary integral equation bas...This paper discusses the application of the boundary contour method fo r resolving plate bending problems. The exploitation of the integrand divergence free property of the plate bending boundary integral equation based on the Kirc hhoff hypothesis and a very useful application of Stokes' Theorem are presented to convert surface integrals on boundary elements to the computation of bending potential functions on the discretized boundary points,even for curved surface elements of arbitrary shape. Singularity and treatment of the discontinued corne r point are not needed at all. The evaluation of the physics variant at internal points is also shown in this article. Numerical results are presented for some plate bending problems and compared against analytical and previous solutions.展开更多
A fast two-stage geometric active contour algorithm for image segmentation is developed. First, the Eikonal equation problem is quickly solved using an improved fast sweeping method, and a criterion of local minimum o...A fast two-stage geometric active contour algorithm for image segmentation is developed. First, the Eikonal equation problem is quickly solved using an improved fast sweeping method, and a criterion of local minimum of area gradient (LMAG) is presented to extract the optimal arrival time. Then, the final time function is passed as an initial state to an area and length minimizing flow model, which adjusts the interface more accurately and prevents it from leaking. For object with complete and salient edge, using the first stage only is able to obtain an ideal result, and this results in a time complexity of O(M), where M is the number of points in each coordinate direction. Both stages are needed for convoluted shapes, but the computation cost can be drastically reduced. Efficiency of the algorithm is verified in segmentation experiments of real images with different feature.展开更多
Contour dynamics (CD) method for the motions of typhoon is presented in this paper. The effect of asymmetric inner structure on the typhoon'sanomalous track has been discussed in different environmental steering. ...Contour dynamics (CD) method for the motions of typhoon is presented in this paper. The effect of asymmetric inner structure on the typhoon'sanomalous track has been discussed in different environmental steering. Todemonstrate the feasibility of the method, the track of Typhoon Yancy(9012) isconcerned with. The numerical results show that the method can describe the tendency of looping qualitatively.展开更多
SmartCrown was a new system developed by VAI for improving the strip profile and flatness control first applied in 1700 mm tandem cold rolling mills at Wuhan Iron & Steel (Group) Corporation (WISCO). After tracin...SmartCrown was a new system developed by VAI for improving the strip profile and flatness control first applied in 1700 mm tandem cold rolling mills at Wuhan Iron & Steel (Group) Corporation (WISCO). After tracing and testing, the application of the conventional crown backup roll matching the SmartCrown work roll of the production mill led to heavy and nonuniform wear, and the edge spalling of the backup roll often occurred. A 3-dimension finite element model of roll stacks was established, which was used to analyze the above-mentioned problems, and it was found that the main reason was the highly nonuniform contact pressure distribution between the work roll and the backup roll. A new FSR (flexible shape backup roll) was developed and applied in 1700 mm tandem cold rolling mills. A lot of good actual effects of FSR, such as evident improvement in profile and flatness of strips, non-occurring edge spalling, wear uniform, and remarkable decrease in roll consumption were validated by long-term industrial applications.展开更多
This article introduces a new normalized nonlocal hybrid level set method for image segmentation.Due to intensity overlapping,blurred edges with complex backgrounds,simple intensity and texture information,such kind o...This article introduces a new normalized nonlocal hybrid level set method for image segmentation.Due to intensity overlapping,blurred edges with complex backgrounds,simple intensity and texture information,such kind of image segmentation is still a challenging task.The proposed method uses both the region and boundary information to achieve accurate segmentation results.The region information can help to identify rough region of interest and prevent the boundary leakage problem.It makes use of normalized nonlocal comparisons between pairs of patches in each region,and a heuristic intensity model is proposed to suppress irrelevant strong edges and constrain the segmentation.The boundary information can help to detect the precise location of the target object,it makes use of the geodesic active contour model to obtain the target boundary.The corresponding variational segmentation problem is implemented by a level set formulation.We use an internal energy term for geometric active contours to penalize the deviation of the level set function from a signed distance function.At last,experimental results on synthetic images and real images are shown in the paper with promising results.展开更多
An automatic 3D wiring method for switchgear design is proposed in this paper. First, wiring constraints are created, and a corresponding evaluation model is proposed. Then, based on the structure of the cabinet, we p...An automatic 3D wiring method for switchgear design is proposed in this paper. First, wiring constraints are created, and a corresponding evaluation model is proposed. Then, based on the structure of the cabinet, we propose a contour expansion scheme to construct rough paths. Different wiring features of the switchgear are used to connect rough local paths. All the paths are represented in a uniform data structure and forma path network. Finally, an improved A* algorithm is used to search the wiring path between the components in the routing network; the evaluation model is considered as heuristic rules for path searching. The result can satisfy the practical requirements of switchgear design. Experimental results are also provided.展开更多
基金Project(35061107)supported by the Doctoral Initiation Project of Jiangsu University of Science and Technology,China
文摘The internal residual stress within a TC 17 titanium alloy joint welded by linear friction welding (LFW) was measured by the contour method, which is a relatively new and destructive technique to obtain a full map of internal residual stress. The specimen was first cut into two parts; the out-of-plane displacement contour formed by the release of the residual stress was then measured; finally, taking the measured contour of the cut plane as the boundary conditions, a linear elastic finite element analysis was carried out to calculate the corresponding distribution of residual stress normal to the cut plane. The internal stress distribution of the TC 17 titanium alloy LFWjoint was also analyzed. The results show that the tensile residual stress in the TC17 LFW weld is mainly present within a region about 12 mm from the weld centerline; the peak tensile residual stress occurs at the weld centerline and reaches 360 MPa (about one third of the yield strength of TC17 alloy); within the weld zone of the TC17 LFW weld, the through-thickness stress is not uniform, and the internal stress is larger than that near the top or bottom surface.
基金financially supported by the China Postdoctoral Science Foundation(Grant No.2019M661024]the Open Foundation of State Key Laboratory of Coastal and Offshore Engineering(Grant No.LP1901)。
文摘The fish cage design requires accurate predictions of long-term extreme loads and responses.Compared with the time-consuming full long-term analysis method integrating all the probability distribution of the short-term extremes,the environmental contour method gains much attention in predicting the long-term extreme values due to the less computational effort.This paper investigates the long-term extreme response of a fish cage using the environmental contour method.The fish cage is numerically simulated based on the lumped-mass method and the curved beam theory.Based on the one-dimensional(1D)and two-dimensional(2D)environmental contour,the extreme responses,including the surge and heave motions,mooring force,and vertical bending of the floater,are predicted for different return periods and compared with the full long-term analysis results.Results indicate that the 1D method greatly underestimates the extreme values.The 2D environmental contour method with a higher percentile level,namely90%,provides reasonable estimations and seems to be suitable for the long-term value analysis.Sensitivity studies show that the mooring arrangement and the bending stiffness have great effects on the bending moment and the mooring force and the mooring line pre-tension has minor effects on the fish cage response.
基金supported by the National Natural Science Foundation of China (No.50935008)
文摘This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.
基金supported by the National Natural Science Foundation of China(51805399)the Fundamental Research Funds for the Central Universities(JB180403)+2 种基金the Chinese Academy of Sciences(CAS)"Light of West China" Program(2017-XBQNXZ-B-024)the National Basic Research Program of China(973 Program)(2015CB857100)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by the CAS
文摘A gradient-based optimization method for producing a contoured beam by using a single-fed reflector antenna is presented. First, a quick and accurate pattern approximation formula based on physical optics(PO) is adopted to calculate the gradients of the directivity with respect to reflector's nodal displacements. Because the approximation formula is a linear function of nodal displacements, the gradient can be easily derived. Then, the method of the steepest descent is adopted, and an optimization iteration procedure is proposed. The iteration procedure includes two loops: an inner loop and an outer loop. In the inner loop, the gradient and pattern are calculated by matrix operation, which is very fast by using the pre-calculated data in the outer loop. In the outer loop, the ideal terms used in the inner loop to calculate the gradient and pattern are updated, and the real pattern is calculated by the PO method. Due to the high approximation accuracy, when the outer loop is performed once, the inner loop can be performed many times, which will save much time because the integration is replaced by matrix operation. In the end, a contoured beam covering the continental United States(CONUS) is designed, and simulation results show the effectiveness of the proposed algorithm.
基金supported by the National Key Research and Development Program (No. 2016YFC0303401)the National Natural Science Foundation of China (No. 51779236)the National Natural Science Foundation of China–Shandong Joint Fund Project (No. U1706226)。
文摘Jacket-type offshore platforms are widely used for oil, gas field, and energy development in shallow water. The design of a jacket structure is highly dependent on target environmental variables. This study focuses on a strategy to estimate design loads for offshore jacket structures based on an environmental contour approach. In addition to the popular conditional distribution model, various classes of bivariate copulas are adopted to construct joint distributions of environmental variables. Analytical formulations of environmental contours based on various models are presented and discussed in this study. The design loads are examined by dynamic response analysis of jacket platform. Results suggest that the conditional model is not recommended for use in estimating design loads in sampling locations due to poor fitting results. Independent copula produces conservative design loads and the extreme response obtained using the conditional model are smaller than those determined by copulas. The suitability of a model for contour construction varies with the origin of wave data. This study provides a reference for the design load estimation of jacket structures and offers an alternative procedure to determine the design criteria for offshore structures.
文摘This paper discusses the application of the boundary contour method fo r resolving plate bending problems. The exploitation of the integrand divergence free property of the plate bending boundary integral equation based on the Kirc hhoff hypothesis and a very useful application of Stokes' Theorem are presented to convert surface integrals on boundary elements to the computation of bending potential functions on the discretized boundary points,even for curved surface elements of arbitrary shape. Singularity and treatment of the discontinued corne r point are not needed at all. The evaluation of the physics variant at internal points is also shown in this article. Numerical results are presented for some plate bending problems and compared against analytical and previous solutions.
文摘A fast two-stage geometric active contour algorithm for image segmentation is developed. First, the Eikonal equation problem is quickly solved using an improved fast sweeping method, and a criterion of local minimum of area gradient (LMAG) is presented to extract the optimal arrival time. Then, the final time function is passed as an initial state to an area and length minimizing flow model, which adjusts the interface more accurately and prevents it from leaking. For object with complete and salient edge, using the first stage only is able to obtain an ideal result, and this results in a time complexity of O(M), where M is the number of points in each coordinate direction. Both stages are needed for convoluted shapes, but the computation cost can be drastically reduced. Efficiency of the algorithm is verified in segmentation experiments of real images with different feature.
文摘Contour dynamics (CD) method for the motions of typhoon is presented in this paper. The effect of asymmetric inner structure on the typhoon'sanomalous track has been discussed in different environmental steering. Todemonstrate the feasibility of the method, the track of Typhoon Yancy(9012) isconcerned with. The numerical results show that the method can describe the tendency of looping qualitatively.
文摘SmartCrown was a new system developed by VAI for improving the strip profile and flatness control first applied in 1700 mm tandem cold rolling mills at Wuhan Iron & Steel (Group) Corporation (WISCO). After tracing and testing, the application of the conventional crown backup roll matching the SmartCrown work roll of the production mill led to heavy and nonuniform wear, and the edge spalling of the backup roll often occurred. A 3-dimension finite element model of roll stacks was established, which was used to analyze the above-mentioned problems, and it was found that the main reason was the highly nonuniform contact pressure distribution between the work roll and the backup roll. A new FSR (flexible shape backup roll) was developed and applied in 1700 mm tandem cold rolling mills. A lot of good actual effects of FSR, such as evident improvement in profile and flatness of strips, non-occurring edge spalling, wear uniform, and remarkable decrease in roll consumption were validated by long-term industrial applications.
基金supported in part by the National Natural Science Foundation of China(11626214,11571309)the General Research Project of Zhejiang Provincial Department of Education(Y201635378)+3 种基金the Zhejiang Provincial Natural Science Foundation of China(LY17F020011)J.Peng is supported by the National Natural Science Foundation of China(11771160)the Research Promotion Program of Huaqiao University(ZQN-PY411)Natural Science Foundation of Fujian Province(2015J01254)
文摘This article introduces a new normalized nonlocal hybrid level set method for image segmentation.Due to intensity overlapping,blurred edges with complex backgrounds,simple intensity and texture information,such kind of image segmentation is still a challenging task.The proposed method uses both the region and boundary information to achieve accurate segmentation results.The region information can help to identify rough region of interest and prevent the boundary leakage problem.It makes use of normalized nonlocal comparisons between pairs of patches in each region,and a heuristic intensity model is proposed to suppress irrelevant strong edges and constrain the segmentation.The boundary information can help to detect the precise location of the target object,it makes use of the geodesic active contour model to obtain the target boundary.The corresponding variational segmentation problem is implemented by a level set formulation.We use an internal energy term for geometric active contours to penalize the deviation of the level set function from a signed distance function.At last,experimental results on synthetic images and real images are shown in the paper with promising results.
基金Supported by National Key Technologies R&D Program of China(2015BAF23B03)National Nature Science Foundation of China(61672307)
文摘An automatic 3D wiring method for switchgear design is proposed in this paper. First, wiring constraints are created, and a corresponding evaluation model is proposed. Then, based on the structure of the cabinet, we propose a contour expansion scheme to construct rough paths. Different wiring features of the switchgear are used to connect rough local paths. All the paths are represented in a uniform data structure and forma path network. Finally, an improved A* algorithm is used to search the wiring path between the components in the routing network; the evaluation model is considered as heuristic rules for path searching. The result can satisfy the practical requirements of switchgear design. Experimental results are also provided.