Stall in compressors can cause performance degradation and even lead to disasters.These unacceptable consequences can be avoided by timely monitoring stall inception and taking effective measures.This paper focused on...Stall in compressors can cause performance degradation and even lead to disasters.These unacceptable consequences can be avoided by timely monitoring stall inception and taking effective measures.This paper focused on the rotating stall warning in a low-speed axial contra-rotating compressor.Firstly,the stall disturbance characteristics under different speed configurations were analyzed.The results showed that as the speed ratio(RR)increased,the stall disturbance propagation speed based on the rear rotor speed gradually decreased.Subsequently,the standard deviation(SD)method,the cross-correlation(CC)method,and the discrete wavelet transform(DWT)method were employed to obtain the stall initiation moments of three different speed configurations.It was found that the SD and CC methods did not achieve significant stall warning results in all three speed configurations.Besides,the stall initiation moment obtained by the DWT method at RR=1.125 was one period after the stall had fully developed,which was unacceptable.Therefore,a stall warning method was developed in the present work based on the long short-term memory(LSTM)regression model.By applying the LSTM model,the predicted stall initiation moments of three speed configurations were at the 557th,518th,and 333rd revolution,which were44,2,and 74 revolutions ahead of stall onset moments,respectively.Furthermore,in scenarios where a minor disturbance preceded the stall,the stall warning effect of the LSTM was greatly improved in comparison with the aforementioned three methods.In contrast,when the pressure fluctuation before the stall was relatively small,the differences between the stall initiation moments predicted by these four methods were not significant.展开更多
The present study investigated the spectrum characteristics of unsteady disturbance and the tip leakage vortex evolution during pre-stall process for a contra-rotating axial compressor(CRAC). Transient numerical simul...The present study investigated the spectrum characteristics of unsteady disturbance and the tip leakage vortex evolution during pre-stall process for a contra-rotating axial compressor(CRAC). Transient numerical simulation was carried out in a single passage of the CRAC. The original transient fluctuation and oscillation of the tip leakage vortex structure with varying flow capacity of the CRAC were revealed using circle-like pattern figure and phase-locked root mean square(PLRMS). Additionally, the tip leakage flow in terms of vortex structure evolution was visualized for the sake of revealing the flow mechanism during pre-stall process. Results show that the unsteady fluctuation first appears at φ=0.3622, and the fluctuation frequency is 2.86 BPF. Unsteady disturbance source is mainly located at the tip side of the downstream rotor leading edge. From the choking point to the near stall condition, tip leakage vortex is always found in the tip leading edge of the upstream rotor. In addition, the tip leakage vortex of upstream rotor remains in the same place over time, i.e., no fluctuation, even when the downstream rotor entered into stall state. Such a phenomenon indicates that the stall point of the contra-rotating compressor is determined by the downstream rotor. Moreover, the maximum fluctuation position is mainly concentrated on the interface between the mainstream and the tip leakage vortex of the downstream rotor. By throttling the compressor, the angle between the main leakage vortex and the circumferential direction decreases gradually. When the main leakage vortex touches and continuously impacts on the leading edge of the adjacent blade, the unsteady disturbance, which is different from that of BPF, appears firstly.展开更多
In order to better understand the stall process of a contra-rotating compressor,the detailed characteristic and multi-channel unsteady pressure signals have been achieved by a special layout of high-frequency response...In order to better understand the stall process of a contra-rotating compressor,the detailed characteristic and multi-channel unsteady pressure signals have been achieved by a special layout of high-frequency response pressure sensors.The array consists of thirty-one high-frequency response dynamic sensors coupled with two optical fiber sensors that were installed on the compressor casing in the direction of circumferential and chordwise of the upstream and downstream of the contra-rotating rotors.A significant hysteresis loop during the stall-recovery process of the contra-rotating compressor was captured successfully.The time series of unsteady signals when the compressor was working on the point of stall occurrence,the period of fully stall,and recovery stall were studied and discussed.Results show a large scale,and low-speed disturbance occurred abruptly at the leading-edge plane of the rear rotor and expands until it passes through both rotors.The single stall cell occupied a circumferential range of 135° and moved in the direction of the rear rotor with an 8.3%shaft speed.As the mass flow rate dropped,the stall cell speed decreases.During the stall recovery process,the rotational speed of disturbance suddenly increased from 7.5%to 18%and even increased to 47%just before the moment when flow recovered axisymmetric.Compared with the rear rotor,the front one dropped out unstable conditions earlier.展开更多
This paper presents the design and verification of the dual-mode core driven fan stage(CDFS)and high-load compressor with a large flow regulation range.In view of the characteristics of large flow regulation range of ...This paper presents the design and verification of the dual-mode core driven fan stage(CDFS)and high-load compressor with a large flow regulation range.In view of the characteristics of large flow regulation range of the two modes and high average stage load coefficient,this paper investigates the design technology of the dual-mode high-efficiency compressor with a large flow regulation range and high-load compressor with an average stage load coefficient of 0.504.Building upon this research,the design of the dual-mode CDFS and four-stage compressor is completed,and three-dimensional numerical simulation of the two modes is carried out.Finally,performance experiment is conducted to verify the result of three-dimensional numerical simulation.The experiment results show that the compressor performance is improved for the whole working conditions by using the new design method,which realizes the complete fusion design of the CDFS and high-pressure compressor(HPC).The matching mechanism of stage characteristics of single and double bypass modes and the variation rule of different adjustment angles on performance are studied comprehensively.Furthermore,it effectively reduces the length and weight of compressor,and breaks through the key technologies such as high-load compressor with the average load factor of 0.504.These findings provide valuable data and a methodological foundation for the development of the next generation aeroengine.展开更多
Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atm...Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atmospheric plasma spraying and top coating was prepared by flame spraying.The microstructure,mechanical properties and abradability of the coating were characterized by scanning elec-tron microscope(SEM),hardness tester,universal testing machine,thermal shock testing machine and abradability testing machine.The res-ults show that the overall spraying structure of the seal coating is uniform,the nickel metal phase is the skeleton supporting the entire coat-ing,and the coating is well bonded without separation.The seal coating has a bonding strength of not less than 7.7 MPa,excellent thermal stability,and thermal shock resistance cycle numbers at 500℃more than 50;the scratch length,deepest invasion depth and wear amount of the coating increase with rise of test temperature,with almost no coating adhesion,indicating that the seal coating has excellent abradability.展开更多
A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibrati...A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.展开更多
Contra-rotating axial flow fan is a kind of the vital equipment in coal mines. Their work conditions directly affect the safety of staff and production. In the paper, the performance of the contra-rotating axial flow ...Contra-rotating axial flow fan is a kind of the vital equipment in coal mines. Their work conditions directly affect the safety of staff and production. In the paper, the performance of the contra-rotating axial flow fan is experi- mentally investigated. The study is focused on the fan performance, the shaft power and the match between the motor and fan efficiency at different blade angles. The results show that the blade angle 43°/26° has the best aerodynamic perfor- mance. The first engine has a greater impact on the fan than the second one. The blade angle with the best aerodynamic performance does not necessarily correspond to the one with the best match between the motor and fan efficiency. The blade angle 43°/24° is the best choice for the operation of the fan in the present study.展开更多
Contra-rotating small-sized axial fans are used as cooling fans for electric equipment. In the case of the contra-rotating rotors, the blade row distance between front and rear rotors is a key parameter for the perfor...Contra-rotating small-sized axial fans are used as cooling fans for electric equipment. In the case of the contra-rotating rotors, the blade row distance between front and rear rotors is a key parameter for the performance and stable operation. The wake and potential interference occur between the front and rear rotors and leakage flow from the front rotor tip influences on the flow condition of the rear rotor near the shroud when the blade row distance is small. Therefore, it is important to clarify the flow condition between front and rear rotors. The fan static pressure curves were obtained by the experimental apparatus and the numerical analysis was also conducted to investigate the internal flow between front and rear rotors. The leakage flow from the front rotor tip reaches the leading edge of the rear rotor when the blade row distance is small as L = 10 mm and the pressure fluctuations at the leading edge of the rear rotor tip becomes larger than those at other radial positions. In the present paper, the vorticity contour between front and rear rotors is shown and pressure fluctuations related to the leakage flow from the front rotor is investigated using the numerical analysis result. Then, suitable blade row distance for the contra-rotating small sized axial fan is discussed based on the internal flow condition.展开更多
It is thought that small hydropower generation is alternative energy, and the energy potential of small hydropower is large. The efficiency of small hydro turbines is lower than that of large one, and these small hydr...It is thought that small hydropower generation is alternative energy, and the energy potential of small hydropower is large. The efficiency of small hydro turbines is lower than that of large one, and these small hydro turbine’s common problems are out of operation by foreign materials. Then, there are demands for small hydro turbines to keep high per- formance and wide flow passage. Therefore, we adopted contra-rotating rotors which can be expected to achieve high performance and low-solidity rotors with wide flow passage in order to accomplish high performance and stable opera- tion. Final goal on this study is development of an electric appliance type small hydro turbine which has high portability and makes an effective use of the unused small hydro power energy source. In the present paper, the performance and the internal flow conditions in detail of contra-rotating small-sized axial flow hydro turbine are shown as a first step of the research with the numerical flow analysis. Then, a capability adopting contra-rotating rotors to an electric appliance type small hydro turbine was discussed. Furthermore, the high performance design for it was considered by the numeri- cal analysis results.展开更多
Many industries in the world take part in the pollution of the environment. This pollution often comes from the reactions of combustion. To optimize these reactions and to minimize pollution, turbulence is a funda- me...Many industries in the world take part in the pollution of the environment. This pollution often comes from the reactions of combustion. To optimize these reactions and to minimize pollution, turbulence is a funda- mental tool. Several factors are at the origin of turbulence in the complex flows, among these factors, we can quote the effect of wings in the rotating flows. The interest of this work is to model and to simulate numeri- cally the effect of wings on the level of turbulence in the flow between two contra-rotating cylinders. We have fixed on these two cylinders eight wings uniformly distributed and we have varied the height of the wings to have six values from 2 mm to 20 mm by maintaining the same Reynolds number of rotation. The numerical tool is based on a statistical model in a point using the closing of the second order of the transport equations of the Reynolds stresses (Reynolds Stress Model: RSM). We have modelled wings effect on the flow by a source term added to the equation tangential speed. The results of the numerical simulation showed that all the average and fluctuating variables are affected the value of the kinetic energy of turbulence as those of Reynolds stresses increase with the height of the wings.展开更多
Turbulence is a fundamentally interesting physical phenomenon which is of fundamental interest. Indeed, it is at the origin of several industrial applications, the control of energy in these industrial applications pa...Turbulence is a fundamentally interesting physical phenomenon which is of fundamental interest. Indeed, it is at the origin of several industrial applications, the control of energy in these industrial applications pass by the comprehension and the modelling of turbulent flows. Several factors are at the origin of turbulence in the complex flows, among these factors, we can quote the effect of wings in the rotating flows. The interest of this work is to model and to simulate numerically the effect of wings on the level of turbulence in the flow between two contra-rotating discs. We have fixed on these two discs eight wings uniformly distributed and we have varied the height of the wings to have eleven values from 0 to 18 mm by maintaining the same Reynolds number of rotation. The numerical tool is based on a statistical model in a point using the closing of the second order of the transport equations of the Reynolds stresses (Reynolds Stress Model: RSM). We have modelled wings effect on the flow by a source term added to the equation tangential speed. The results of the numerical simulation showed that all the average and fluctuating variables are affected the value of the kinetic energy of turbulence as those of Reynolds stresses increase with the height of the wings.展开更多
During recent years,the axial-flus PMSM with contra-rotating rotors has become a hot topic in academic research due to its high efficiency and simple structure.However,its back-EMF may be distorted under the condition...During recent years,the axial-flus PMSM with contra-rotating rotors has become a hot topic in academic research due to its high efficiency and simple structure.However,its back-EMF may be distorted under the condition of different angular positions.This paper investigates characteristics of the novel motor used for contra-propeller driving.Considering the torque ripple and current oscillation under unbalanced load condition,this paper analyzes the distorted back-EMF of the machine when its two rotors get different angular positions during rotating.The analysis results are validated by transient-magnetic 3-D FEA method,which the 3-D FEA software is used to model this motor and transient simulations are carried out to obtain its magnetic characteristic and main performances.A main focus is put on the back-EMF characteristic with different angular positions between the two rotors.Furthermore,the characteristic of torque production under unbalanced load is investigated.Finally,a prototype motor is fabricated to validate the analyses of this paper.展开更多
Contra-rotating small-sized fans are used as cooling fans for electric equipment. The internal flow condition between the front and rear rotors of the contra-rotating small-sized fan is not known well especially at th...Contra-rotating small-sized fans are used as cooling fans for electric equipment. The internal flow condition between the front and rear rotors of the contra-rotating small-sized fan is not known well especially at the low flow rate. Furthermore, the blade row distance between the front and rear rotors is an important parameter for the contra-rotating small-sized fan and its influence on the internal flow condition is not clarified at the low flow rate. Therefore, the internal flow condition of the contra-rotating small-sized fan at the low flow rate is investigated by the numerical analysis in this research. The numerical analysis results are validated by comparing the fan static pressure curves of the numerical results to the experimental results. The internal flow condition at the low flow rate is clarified using the numerical models of the different blade row distance L = 10 mm and 30 mm. In the present paper, pressure fluctuations phase locked each front and rear rotor’s rotation are shown and the influences of the wake and the potential interference are discussed by the unsteady numerical analysis results at the low flow rate.展开更多
High pressure and large flow rate small-sized cooling fans are used for servers in data centers and there is a strong demand to increase its performance because of increase of quantity of heat from servers. Contra-rot...High pressure and large flow rate small-sized cooling fans are used for servers in data centers and there is a strong demand to increase its performance because of increase of quantity of heat from servers. Contra-rotating rotors have been adopted for some of high pressure and large flow rate cooling fans to meet the demand. The performance curve of the contra-rotating small-sized cooling fan with 40 mm square casing was investigated by an experimental apparatus and its internal flow condition was clarified by the numerical analysis. The fan static pressure of the front rotor was extremely low and it increased significantly at the rear rotor. The uniform flow was achieved at the inlet of the rear rotor because of the special shape of the casing between the front and rear rotors. On the other hand, the tip leakage flow was large enough to influence on the main flow of the test cooling fan by the design specification of high pressure with compact rotor diameter.展开更多
Accurate and efficient prediction of the aerodynamic performance and flow details of axial-flow com-pressors is of great engineering application value for the aerodynamic design and flow control of axial-flow compres-...Accurate and efficient prediction of the aerodynamic performance and flow details of axial-flow com-pressors is of great engineering application value for the aerodynamic design and flow control of axial-flow compres-sors.In this work,a delayed detached eddy simulation method is developed and applied to numerically simulate the tur-bulent channel flow and the aerodynamic performance of NASA Rotor 35.Several acceleration techniques including parallel implementation are also used to speed up the iteration convergence.The mean velocity distribution and Reyn-olds stress distribution in the boundary layer of turbulent channel flow and the aerodynamic performance curve of NASA Rotor 35 are predicted.The good agreement between the present delayed detached eddy simulation results and the available direct numerical simulation results or experimental data confirms the effectiveness of the developed meth-od in the accurate and efficient prediction of complex flow in turbomachinery.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52276039)。
文摘Stall in compressors can cause performance degradation and even lead to disasters.These unacceptable consequences can be avoided by timely monitoring stall inception and taking effective measures.This paper focused on the rotating stall warning in a low-speed axial contra-rotating compressor.Firstly,the stall disturbance characteristics under different speed configurations were analyzed.The results showed that as the speed ratio(RR)increased,the stall disturbance propagation speed based on the rear rotor speed gradually decreased.Subsequently,the standard deviation(SD)method,the cross-correlation(CC)method,and the discrete wavelet transform(DWT)method were employed to obtain the stall initiation moments of three different speed configurations.It was found that the SD and CC methods did not achieve significant stall warning results in all three speed configurations.Besides,the stall initiation moment obtained by the DWT method at RR=1.125 was one period after the stall had fully developed,which was unacceptable.Therefore,a stall warning method was developed in the present work based on the long short-term memory(LSTM)regression model.By applying the LSTM model,the predicted stall initiation moments of three speed configurations were at the 557th,518th,and 333rd revolution,which were44,2,and 74 revolutions ahead of stall onset moments,respectively.Furthermore,in scenarios where a minor disturbance preceded the stall,the stall warning effect of the LSTM was greatly improved in comparison with the aforementioned three methods.In contrast,when the pressure fluctuation before the stall was relatively small,the differences between the stall initiation moments predicted by these four methods were not significant.
基金supported by the National Natural Science Foundation of China (No. 51376150)
文摘The present study investigated the spectrum characteristics of unsteady disturbance and the tip leakage vortex evolution during pre-stall process for a contra-rotating axial compressor(CRAC). Transient numerical simulation was carried out in a single passage of the CRAC. The original transient fluctuation and oscillation of the tip leakage vortex structure with varying flow capacity of the CRAC were revealed using circle-like pattern figure and phase-locked root mean square(PLRMS). Additionally, the tip leakage flow in terms of vortex structure evolution was visualized for the sake of revealing the flow mechanism during pre-stall process. Results show that the unsteady fluctuation first appears at φ=0.3622, and the fluctuation frequency is 2.86 BPF. Unsteady disturbance source is mainly located at the tip side of the downstream rotor leading edge. From the choking point to the near stall condition, tip leakage vortex is always found in the tip leading edge of the upstream rotor. In addition, the tip leakage vortex of upstream rotor remains in the same place over time, i.e., no fluctuation, even when the downstream rotor entered into stall state. Such a phenomenon indicates that the stall point of the contra-rotating compressor is determined by the downstream rotor. Moreover, the maximum fluctuation position is mainly concentrated on the interface between the mainstream and the tip leakage vortex of the downstream rotor. By throttling the compressor, the angle between the main leakage vortex and the circumferential direction decreases gradually. When the main leakage vortex touches and continuously impacts on the leading edge of the adjacent blade, the unsteady disturbance, which is different from that of BPF, appears firstly.
基金This work has been supported by the National Natural Science Foundation of China(No.51376150,No.51906205)National Science and Technology Major Project(2017-11-0009-0023).
文摘In order to better understand the stall process of a contra-rotating compressor,the detailed characteristic and multi-channel unsteady pressure signals have been achieved by a special layout of high-frequency response pressure sensors.The array consists of thirty-one high-frequency response dynamic sensors coupled with two optical fiber sensors that were installed on the compressor casing in the direction of circumferential and chordwise of the upstream and downstream of the contra-rotating rotors.A significant hysteresis loop during the stall-recovery process of the contra-rotating compressor was captured successfully.The time series of unsteady signals when the compressor was working on the point of stall occurrence,the period of fully stall,and recovery stall were studied and discussed.Results show a large scale,and low-speed disturbance occurred abruptly at the leading-edge plane of the rear rotor and expands until it passes through both rotors.The single stall cell occupied a circumferential range of 135° and moved in the direction of the rear rotor with an 8.3%shaft speed.As the mass flow rate dropped,the stall cell speed decreases.During the stall recovery process,the rotational speed of disturbance suddenly increased from 7.5%to 18%and even increased to 47%just before the moment when flow recovered axisymmetric.Compared with the rear rotor,the front one dropped out unstable conditions earlier.
文摘This paper presents the design and verification of the dual-mode core driven fan stage(CDFS)and high-load compressor with a large flow regulation range.In view of the characteristics of large flow regulation range of the two modes and high average stage load coefficient,this paper investigates the design technology of the dual-mode high-efficiency compressor with a large flow regulation range and high-load compressor with an average stage load coefficient of 0.504.Building upon this research,the design of the dual-mode CDFS and four-stage compressor is completed,and three-dimensional numerical simulation of the two modes is carried out.Finally,performance experiment is conducted to verify the result of three-dimensional numerical simulation.The experiment results show that the compressor performance is improved for the whole working conditions by using the new design method,which realizes the complete fusion design of the CDFS and high-pressure compressor(HPC).The matching mechanism of stage characteristics of single and double bypass modes and the variation rule of different adjustment angles on performance are studied comprehensively.Furthermore,it effectively reduces the length and weight of compressor,and breaks through the key technologies such as high-load compressor with the average load factor of 0.504.These findings provide valuable data and a methodological foundation for the development of the next generation aeroengine.
基金supported by Zhejiang Provincial Science and Technology Plan Project(Grant No.2022C01118).
文摘Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atmospheric plasma spraying and top coating was prepared by flame spraying.The microstructure,mechanical properties and abradability of the coating were characterized by scanning elec-tron microscope(SEM),hardness tester,universal testing machine,thermal shock testing machine and abradability testing machine.The res-ults show that the overall spraying structure of the seal coating is uniform,the nickel metal phase is the skeleton supporting the entire coat-ing,and the coating is well bonded without separation.The seal coating has a bonding strength of not less than 7.7 MPa,excellent thermal stability,and thermal shock resistance cycle numbers at 500℃more than 50;the scratch length,deepest invasion depth and wear amount of the coating increase with rise of test temperature,with almost no coating adhesion,indicating that the seal coating has excellent abradability.
基金supported by the National Natural Science Foundation of China(Grant No.51079157)
文摘A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.
文摘Contra-rotating axial flow fan is a kind of the vital equipment in coal mines. Their work conditions directly affect the safety of staff and production. In the paper, the performance of the contra-rotating axial flow fan is experi- mentally investigated. The study is focused on the fan performance, the shaft power and the match between the motor and fan efficiency at different blade angles. The results show that the blade angle 43°/26° has the best aerodynamic perfor- mance. The first engine has a greater impact on the fan than the second one. The blade angle with the best aerodynamic performance does not necessarily correspond to the one with the best match between the motor and fan efficiency. The blade angle 43°/24° is the best choice for the operation of the fan in the present study.
文摘Contra-rotating small-sized axial fans are used as cooling fans for electric equipment. In the case of the contra-rotating rotors, the blade row distance between front and rear rotors is a key parameter for the performance and stable operation. The wake and potential interference occur between the front and rear rotors and leakage flow from the front rotor tip influences on the flow condition of the rear rotor near the shroud when the blade row distance is small. Therefore, it is important to clarify the flow condition between front and rear rotors. The fan static pressure curves were obtained by the experimental apparatus and the numerical analysis was also conducted to investigate the internal flow between front and rear rotors. The leakage flow from the front rotor tip reaches the leading edge of the rear rotor when the blade row distance is small as L = 10 mm and the pressure fluctuations at the leading edge of the rear rotor tip becomes larger than those at other radial positions. In the present paper, the vorticity contour between front and rear rotors is shown and pressure fluctuations related to the leakage flow from the front rotor is investigated using the numerical analysis result. Then, suitable blade row distance for the contra-rotating small sized axial fan is discussed based on the internal flow condition.
文摘It is thought that small hydropower generation is alternative energy, and the energy potential of small hydropower is large. The efficiency of small hydro turbines is lower than that of large one, and these small hydro turbine’s common problems are out of operation by foreign materials. Then, there are demands for small hydro turbines to keep high per- formance and wide flow passage. Therefore, we adopted contra-rotating rotors which can be expected to achieve high performance and low-solidity rotors with wide flow passage in order to accomplish high performance and stable opera- tion. Final goal on this study is development of an electric appliance type small hydro turbine which has high portability and makes an effective use of the unused small hydro power energy source. In the present paper, the performance and the internal flow conditions in detail of contra-rotating small-sized axial flow hydro turbine are shown as a first step of the research with the numerical flow analysis. Then, a capability adopting contra-rotating rotors to an electric appliance type small hydro turbine was discussed. Furthermore, the high performance design for it was considered by the numeri- cal analysis results.
文摘Many industries in the world take part in the pollution of the environment. This pollution often comes from the reactions of combustion. To optimize these reactions and to minimize pollution, turbulence is a funda- mental tool. Several factors are at the origin of turbulence in the complex flows, among these factors, we can quote the effect of wings in the rotating flows. The interest of this work is to model and to simulate numeri- cally the effect of wings on the level of turbulence in the flow between two contra-rotating cylinders. We have fixed on these two cylinders eight wings uniformly distributed and we have varied the height of the wings to have six values from 2 mm to 20 mm by maintaining the same Reynolds number of rotation. The numerical tool is based on a statistical model in a point using the closing of the second order of the transport equations of the Reynolds stresses (Reynolds Stress Model: RSM). We have modelled wings effect on the flow by a source term added to the equation tangential speed. The results of the numerical simulation showed that all the average and fluctuating variables are affected the value of the kinetic energy of turbulence as those of Reynolds stresses increase with the height of the wings.
文摘Turbulence is a fundamentally interesting physical phenomenon which is of fundamental interest. Indeed, it is at the origin of several industrial applications, the control of energy in these industrial applications pass by the comprehension and the modelling of turbulent flows. Several factors are at the origin of turbulence in the complex flows, among these factors, we can quote the effect of wings in the rotating flows. The interest of this work is to model and to simulate numerically the effect of wings on the level of turbulence in the flow between two contra-rotating discs. We have fixed on these two discs eight wings uniformly distributed and we have varied the height of the wings to have eleven values from 0 to 18 mm by maintaining the same Reynolds number of rotation. The numerical tool is based on a statistical model in a point using the closing of the second order of the transport equations of the Reynolds stresses (Reynolds Stress Model: RSM). We have modelled wings effect on the flow by a source term added to the equation tangential speed. The results of the numerical simulation showed that all the average and fluctuating variables are affected the value of the kinetic energy of turbulence as those of Reynolds stresses increase with the height of the wings.
基金This work was supported in part by the National Key R&D Program of China(No.2017YFB1300900)the Natural Science Foundation of China under Grant 51577052,51707062.
文摘During recent years,the axial-flus PMSM with contra-rotating rotors has become a hot topic in academic research due to its high efficiency and simple structure.However,its back-EMF may be distorted under the condition of different angular positions.This paper investigates characteristics of the novel motor used for contra-propeller driving.Considering the torque ripple and current oscillation under unbalanced load condition,this paper analyzes the distorted back-EMF of the machine when its two rotors get different angular positions during rotating.The analysis results are validated by transient-magnetic 3-D FEA method,which the 3-D FEA software is used to model this motor and transient simulations are carried out to obtain its magnetic characteristic and main performances.A main focus is put on the back-EMF characteristic with different angular positions between the two rotors.Furthermore,the characteristic of torque production under unbalanced load is investigated.Finally,a prototype motor is fabricated to validate the analyses of this paper.
文摘Contra-rotating small-sized fans are used as cooling fans for electric equipment. The internal flow condition between the front and rear rotors of the contra-rotating small-sized fan is not known well especially at the low flow rate. Furthermore, the blade row distance between the front and rear rotors is an important parameter for the contra-rotating small-sized fan and its influence on the internal flow condition is not clarified at the low flow rate. Therefore, the internal flow condition of the contra-rotating small-sized fan at the low flow rate is investigated by the numerical analysis in this research. The numerical analysis results are validated by comparing the fan static pressure curves of the numerical results to the experimental results. The internal flow condition at the low flow rate is clarified using the numerical models of the different blade row distance L = 10 mm and 30 mm. In the present paper, pressure fluctuations phase locked each front and rear rotor’s rotation are shown and the influences of the wake and the potential interference are discussed by the unsteady numerical analysis results at the low flow rate.
文摘High pressure and large flow rate small-sized cooling fans are used for servers in data centers and there is a strong demand to increase its performance because of increase of quantity of heat from servers. Contra-rotating rotors have been adopted for some of high pressure and large flow rate cooling fans to meet the demand. The performance curve of the contra-rotating small-sized cooling fan with 40 mm square casing was investigated by an experimental apparatus and its internal flow condition was clarified by the numerical analysis. The fan static pressure of the front rotor was extremely low and it increased significantly at the rear rotor. The uniform flow was achieved at the inlet of the rear rotor because of the special shape of the casing between the front and rear rotors. On the other hand, the tip leakage flow was large enough to influence on the main flow of the test cooling fan by the design specification of high pressure with compact rotor diameter.
基金National Science and Technology Major Project of China(No.2017-II 0006-0020)National Key Research and Development Project of China(2016YFB0200901)National Natural Science Foundation of China(51776154)。
文摘Accurate and efficient prediction of the aerodynamic performance and flow details of axial-flow com-pressors is of great engineering application value for the aerodynamic design and flow control of axial-flow compres-sors.In this work,a delayed detached eddy simulation method is developed and applied to numerically simulate the tur-bulent channel flow and the aerodynamic performance of NASA Rotor 35.Several acceleration techniques including parallel implementation are also used to speed up the iteration convergence.The mean velocity distribution and Reyn-olds stress distribution in the boundary layer of turbulent channel flow and the aerodynamic performance curve of NASA Rotor 35 are predicted.The good agreement between the present delayed detached eddy simulation results and the available direct numerical simulation results or experimental data confirms the effectiveness of the developed meth-od in the accurate and efficient prediction of complex flow in turbomachinery.