期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Software Defect Prediction Based on Stacked Contractive Autoencoder and Multi-Objective Optimization 被引量:2
1
作者 Nana Zhang Kun Zhu +1 位作者 Shi Ying Xu Wang 《Computers, Materials & Continua》 SCIE EI 2020年第10期279-308,共30页
Software defect prediction plays an important role in software quality assurance.However,the performance of the prediction model is susceptible to the irrelevant and redundant features.In addition,previous studies mos... Software defect prediction plays an important role in software quality assurance.However,the performance of the prediction model is susceptible to the irrelevant and redundant features.In addition,previous studies mostly regard software defect prediction as a single objective optimization problem,and multi-objective software defect prediction has not been thoroughly investigated.For the above two reasons,we propose the following solutions in this paper:(1)we leverage an advanced deep neural network-Stacked Contractive AutoEncoder(SCAE)to extract the robust deep semantic features from the original defect features,which has stronger discrimination capacity for different classes(defective or non-defective).(2)we propose a novel multi-objective defect prediction model named SMONGE that utilizes the Multi-Objective NSGAII algorithm to optimize the advanced neural network-Extreme learning machine(ELM)based on state-of-the-art Pareto optimal solutions according to the features extracted by SCAE.We mainly consider two objectives.One objective is to maximize the performance of ELM,which refers to the benefit of the SMONGE model.Another objective is to minimize the output weight norm of ELM,which is related to the cost of the SMONGE model.We compare the SCAE with six state-of-the-art feature extraction methods and compare the SMONGE model with multiple baseline models that contain four classic defect predictors and the MONGE model without SCAE across 20 open source software projects.The experimental results verify that the superiority of SCAE and SMONGE on seven evaluation metrics. 展开更多
关键词 Software defect prediction deep neural network stacked contractive autoencoder multi-objective optimization extreme learning machine
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部