With the growing concern for the environmental impact of greenhouse gases and the rapid depletion of important resources,the use of Nb-bearing steels for advanced high strength steel applications can reduce raw materi...With the growing concern for the environmental impact of greenhouse gases and the rapid depletion of important resources,the use of Nb-bearing steels for advanced high strength steel applications can reduce raw material usage and the carbon footprint.The conservation and more efficient use of ironmaking and steelmaking raw materials is an urgent issue for steel producers globally.Recently-developed Nb-microalloyed steel applications provide a more effective product design and reduce CO 2 emissions and energy consumption per tonne of steel.A sustainability structural steelstudy presents the positive cost and reduced environmental impact of Nb-microalloyed steels.This analysis compares the CO 2 emission reduction and energy savings in the steelmaking process melted in both the Basic Oxygen Furnace (BOF) and the Electric Arc Furnace (EAF).Nb-microalloyed structural steels offer the opportunity to reduce the total weight of a given structure compared to a non-microalloyed steel construction.Generally,one considers the savings associated with less material and lower construction costs.In addition,there is an environmental benefit in the reduction in emissions (kilograms of CO 2) and less energy consumption (GJ) due to the fact that less steel is melted.Plus,there are lighter sections and less material weight in the final end user design which reduces transportation and fabrication costs.A forecasted trend is presented which introduces an increased usage of microalloyed steel grades to replace traditional commodity-type non-alloyed higher carbon-manganese grades for environmental benefits and significant cost reduction.展开更多
文摘With the growing concern for the environmental impact of greenhouse gases and the rapid depletion of important resources,the use of Nb-bearing steels for advanced high strength steel applications can reduce raw material usage and the carbon footprint.The conservation and more efficient use of ironmaking and steelmaking raw materials is an urgent issue for steel producers globally.Recently-developed Nb-microalloyed steel applications provide a more effective product design and reduce CO 2 emissions and energy consumption per tonne of steel.A sustainability structural steelstudy presents the positive cost and reduced environmental impact of Nb-microalloyed steels.This analysis compares the CO 2 emission reduction and energy savings in the steelmaking process melted in both the Basic Oxygen Furnace (BOF) and the Electric Arc Furnace (EAF).Nb-microalloyed structural steels offer the opportunity to reduce the total weight of a given structure compared to a non-microalloyed steel construction.Generally,one considers the savings associated with less material and lower construction costs.In addition,there is an environmental benefit in the reduction in emissions (kilograms of CO 2) and less energy consumption (GJ) due to the fact that less steel is melted.Plus,there are lighter sections and less material weight in the final end user design which reduces transportation and fabrication costs.A forecasted trend is presented which introduces an increased usage of microalloyed steel grades to replace traditional commodity-type non-alloyed higher carbon-manganese grades for environmental benefits and significant cost reduction.