This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncerta...This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations.展开更多
As an independent sand control unit or a common protective shell of a high-quality screen,the punching screen is the outermost sand retaining unit of the sand control pipe which is used in geothermal well or oil and g...As an independent sand control unit or a common protective shell of a high-quality screen,the punching screen is the outermost sand retaining unit of the sand control pipe which is used in geothermal well or oil and gas well.However,most screens only consider the influence of the internal sand retaining medium parameters in the sand control performance design while ignoring the influence of the plugging of the punching screen on the overall sand retaining performance of the screen.To explore the clogging mechanism of the punching screen,this paper established the clogging mechanism calculation model of a single punching screen sand control unit by using the computational fluid mechanics-discrete element method(CFD-DEM)combined method.According to the combined motion of particles and fluids,the influence of the internal flow state on particle motion and accumulation was analyzed.The results showed that(1)the clogging process of the punching sand control unit is divided into three stages:initial clogging,aggravation of clogging and stability of clogging.In the initial stage of blockage,coarse particles form a loose bridge structure,and blockage often occurs preferentially at the streamline gathering place below chamfering inside the sand control unit.In the stage of blockage intensification,the particle mass develops into a relatively complete sand bridge,which develops from both ends of the opening to the center of the opening.In the stable plugging stage,the sand deposits show a“fan shape”and form a“V-shaped”gully inside the punching slot element.(2)Under a certain reservoir particle-size distribution,The slit length and opening height have a large influence on the permeability and blockage rate,while the slit width size has little influence on the permeability and blockage rate.The microscopic clogging mechanism and its law of the punching screen prevention unit are proposed in this study,which has some field guidance significance for the design of punching screen and sand prevention selection.展开更多
BACKGROUND The severity of nonalcoholic fatty liver disease(NAFLD)and lipid metabolism are related to the occurrence of colorectal polyps.Liver-controlled attenuation parameters(liver-CAPs)have been established to pre...BACKGROUND The severity of nonalcoholic fatty liver disease(NAFLD)and lipid metabolism are related to the occurrence of colorectal polyps.Liver-controlled attenuation parameters(liver-CAPs)have been established to predict the prognosis of hepatic steatosis patients.AIM To explore the risk factors associated with colorectal polyps in patients with NAFLD by analyzing liver-CAPs and establishing a diagnostic model.METHODS Patients who were diagnosed with colorectal polyps in the Department of Gastroenterology of our hospital between June 2021 and April 2022 composed the case group,and those with no important abnormalities composed the control group.The area under the receiver operating characteristic curve was used to predict the diagnostic efficiency.Differences were considered statistically significant when P<0.05.RESULTS The median triglyceride(TG)and liver-CAP in the case group were significantly greater than those in the control group(mmol/L,1.74 vs 1.05;dB/m,282 vs 254,P<0.05).TG and liver-CAP were found to be independent risk factors for colorectal polyps,with ORs of 2.338(95%CI:1.154–4.733)and 1.019(95%CI:1.006–1.033),respectively(P<0.05).And there was no difference in the diagnostic efficacy between liver-CAP and TG combined with liver-CAP(TG+CAP)(P>0.05).When the liver-CAP was greater than 291 dB/m,colorectal polyps were more likely to occur.CONCLUSION The levels of TG and liver-CAP in patients with colorectal polyps are significantly greater than those patients without polyps.Liver-CAP alone can be used to diagnose NAFLD with colorectal polyps.展开更多
We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that prov...We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.展开更多
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)syste...This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)systems.A model-based probabilistic safe controller is first designed to guarantee probabilisticλ-contractivity(i.e.,stability and invariance)of the LPV system with respect to a given polyhedral safe set.To obviate the requirement of knowing the LPV system model and to bypass identifying its open-loop model,its closed-loop data-based representation is provided in terms of state and scheduling data as well as a decision variable.It is shown that the variance of the closedloop system,as well as the probability of safety satisfaction,depends on the decision variable and the noise covariance.A minimum-variance direct data-driven gain-scheduling safe control design approach is presented next by designing the decision variable such that all possible closed-loop system realizations satisfy safety with the highest confidence level.This minimum-variance approach is a control-oriented learning method since it minimizes the variance of the state of the closed-loop system with respect to the safe set,and thus minimizes the risk of safety violation.Unlike the certainty-equivalent approach that results in a risk-neutral control design,the minimum-variance method leads to a risk-averse control design.It is shown that the presented direct risk-averse learning approach requires weaker data richness conditions than existing indirect learning methods based on system identification and can lead to a lower risk of safety violation.Two simulation examples along with an experimental validation on an autonomous vehicle are provided to show the effectiveness of the presented approach.展开更多
The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual ...The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies.展开更多
Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM)...Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation.展开更多
Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of i...Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value.展开更多
In this paper,the leader-follower consensus problem for a multiple flexible manipulator network with actuator failures,parameter uncertainties,and unknown time-varying boundary disturbances is addressed.The purpose of...In this paper,the leader-follower consensus problem for a multiple flexible manipulator network with actuator failures,parameter uncertainties,and unknown time-varying boundary disturbances is addressed.The purpose of this study is to develop distributed controllers utilizing local interactive protocols that not only suppress the vibration of each flexible manipulator but also achieve consensus on joint angle position between actual followers and the virtual leader.Following the accomplishment of the reconstruction of the fault terms and parameter uncertainties,the adaptive neural network method and parameter estimation technique are employed to compensate for unknown items and bounded disturbances.Furthermore,the Lyapunov stability theory is used to demonstrate that followers’angle consensus errors and vibration deflections in closed-loop systems are uniformly ultimately bounded.Finally,the numerical simulation results confirm the efficacy of the proposed controllers.展开更多
System identification is a quintessential measure for real-time analysis on kinematic characteristics for deep-sea mining vehicle, and thus to enhance the control performance and testing efficiency. In this study, the...System identification is a quintessential measure for real-time analysis on kinematic characteristics for deep-sea mining vehicle, and thus to enhance the control performance and testing efficiency. In this study, the system identification algorithm, recursive least square method with instrumental variables(IV-RLS), is tailored to model ‘Pioneer I’, a deep-sea mining vehicle which recently completed a 1305-meter-deep sea trial in the Xisha area of the South China Sea in August, 2021. The algorithm operates on the sensor data collected from the trial to obtain the vehicle’s kinematic model and accordingly design the parameter self-tuning controller. The performances demonstrate the accuracy of the model, and prove its generalization capability. With this model, the optimal controller has been designed, the control parameters have been self-tuned, and the response time and robustness of the system have been optimized,which validates the high efficiency on digital modelling for precision control of deep-sea mining vehicles.展开更多
High precision control of substrate tension is the premise and guarantee for producing high-quality products in roll-to-roll precision coating machine.However,the complex relationships in tension system make the probl...High precision control of substrate tension is the premise and guarantee for producing high-quality products in roll-to-roll precision coating machine.However,the complex relationships in tension system make the problems of decoupling control difficult to be solved,which has limited the improvement of tension control accuracy for the coating machine.Therefore,an ADRC parameters self-tuning decoupling strategy based on RBF neural network is proposed to improve the control accuracy of tension system in this paper.Firstly,a global coupling nonlinear model of the tension system is established according to the composition of the coating machine,and the global coupling model is linearized based on the first-order Taylor formula.Secondly,according to the linear model of the tension system,a parameters self-tuning decoupling algorithm of the tension system is proposed by integrating feedforward control,ADRC and RBF.Finally,the simulation results show that the proposed tension control strategy has good decoupling control performance and effectively improves the tension control accuracy for the coating machine.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to...In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to)the typical size of oil and water droplets,the residence time and temperature of fluid and the dosage of demulsifier.Using the“Specification for Oil and Gas Separators”as a basis,the control loops and operating parameters of each separator are optimized Considering the Halfaya Oilfield as a testbed,it is shown that the proposed approach can lead to good results in the production stage.展开更多
In the construction of a soft rock tunnel,it is critical to accurately estimate the pre-stressed anchor support parameters for surrounding rock reinforcement;otherwise,engineering disasters may occur.This paper presen...In the construction of a soft rock tunnel,it is critical to accurately estimate the pre-stressed anchor support parameters for surrounding rock reinforcement;otherwise,engineering disasters may occur.This paper presents a support parameter selection method that aims to allow deformation as a control objective,which was applied to the tunnel located in Muzailing Highway,Min County,Dingxi City,Gansu Province,China.Through theoretical analysis,we have identified five factors that influence pre-stressing anchorages.The selection of mechanical parameters for the rock mass was carried out using an inverse analysis method.Compared with the measured data,the maximum displacement error of the numerical simulation results was only 0.07 m.The length of anchor cable,circumferential spacing of anchor cable,longitudinal spacing,and pre-stress index are adopted as the input parameters for the support vector machine neural network model based on particle swarm optimization(PSO-LSSVM).Besides,the vault subsidence and the maximum deformation of surrounding rock are considered as output values(performance indices).The goodness of fit between the predicted values and the simulated values exceeds 0.9.Finally,all support parameters within the acceptable deformation range are calculated.The optimal support variables are derived by considering the construction cost and duration.The field application results show that it is feasible to construct the sample database utilizing the numerical simulation approach by taking the displacement as the control target and using the neural network to specify the appropriate support parameters.展开更多
A rotary-concentrating device for thermal conduction is constructed to control and guide thermal energy transmitting in elastic plates.The designed device has the ability of concentrating for thermal conduction and co...A rotary-concentrating device for thermal conduction is constructed to control and guide thermal energy transmitting in elastic plates.The designed device has the ability of concentrating for thermal conduction and controlling the processes of thermal diffusion in a plate.The multilayered isotropic material properties of the rotary-concentrating device are derived based on the transformation and rotary medium method and a rotation parameter to control the thermal diffusion process is introduced.The efficiency of the rotary-concentrating device for thermal conduction is verified.Stability of temperature fields in a plate with the rotary-concentrating device is analyzed to study the performance of rotary-concentrating.Numerical examples show that the constructed rotary-concentrating device for thermal conduction can effectively rotate and focus on the thermal energy into the device for a wide range of diffusion temperatures,which can enhance the thermal conduction.Therefore,this study can provide a theoretical support for potential applications in fields of energy harvesting and thermal conduction control.展开更多
A memory-type control chart utilizes previous information for chart construction.An example of a memory-type chart is an exponentially-weighted moving average(EWMA)control chart.The EWMA control chart is well-known an...A memory-type control chart utilizes previous information for chart construction.An example of a memory-type chart is an exponentially-weighted moving average(EWMA)control chart.The EWMA control chart is well-known and widely employed by practitioners for monitoring small and moderate process mean shifts.Meanwhile,the EWMA median chart is robust against outliers.In light of this,the economic model of the EWMA and EWMA median control charts are commonly considered.This study aims to investigate the effect of cost parameters on the out-of-control average run lengthðARL_(1)Þin implementing EWMA and EWMA median control charts.The economic model was used to compute the ARL_(1) parameter.The 14 input parameters were identified and the analysis was carried out based on the one-parameter-at-a-time basis.When the input parameters change based on a predetermined percentage,the ARL_(1) is affected.According to the results of the EWMA chart,nine input parameters had an effect andfive input parameters had no effect on the ARL_(1) parameter.Further,only seven of the 14 input parameters had an effect on the ARL_(1) of the EWMA median chart.However,the effect of each input parameter on the ARL_(1) was different.Moreover,the ARL_(1) for the EWMA median chart was smaller than the EWMA chart.This analysis is crucial to observe and determine the input parameters that have a significant impact on the ARL_(1) of the EMWA and EWMA median control charts.Hence,practitioners can obtain an overview of the influence of the input parameters on the ARL_(1) when implementing the EWMA and EWMA median control charts.展开更多
The basis weight control loop of the papermaking process is a non-linear system with time-delay and time-varying.It is impractical to identify a model that can restore the model of real papermaking process.Determining...The basis weight control loop of the papermaking process is a non-linear system with time-delay and time-varying.It is impractical to identify a model that can restore the model of real papermaking process.Determining a more accurate identification model is very important for designing the controller of the control system and maintaining the stable operation of the papermaking process.In this study,a strange nonchaotic particle swarm optimization(SNPSO)algorithm is proposed to identify the models of real papermaking processes,and this identification ability is significantly enhanced compared with particle swarm optimization(PSO).First,random particles are initialized by strange nonchaotic sequences to obtain high-quality solutions.Furthermore,the weight of linear attenuation is replaced by strange nonchaotic sequence and the time-varying acceleration coefficients and a mutation rule with strange nonchaotic characteristics are utilized in SNPSO.The above strategies effectively improve the global and local search ability of particles and the ability to escape from local optimization.To illustrate the effectiveness of SNPSO,step response data are used to identify the models of real industrial processes.Compared with classical PSO,PSO with timevarying acceleration coefficients(PSO-TVAC)and modified particle swarm optimization(MPSO),the simulation results demonstrate that SNPSO has stronger identification ability,faster convergence speed,and better robustness.展开更多
Temperature control curve is the key to achieving temperature control and crack prevention of high concrete dam during construction,and its rationality depends on the accurate measurement of temperature stress.With th...Temperature control curve is the key to achieving temperature control and crack prevention of high concrete dam during construction,and its rationality depends on the accurate measurement of temperature stress.With the simulation testing machine for the temperature stress,in the present study,we carried out the deformation process tests of concrete under three temperature curves:convex,straight and concave.Besides,we not only measured the early-age elastic modulus,creep parameters and stress process,but also proposed the preferred type.The results show that at early age,higher temperature always leads to greater elastic modulus and smaller creep.However,the traditional indoor experiments have underestimated the elastic modulus and creep development at early age,which makes the calculated value of temperature stress too small,thus increasing the cracking risk.In this study,the stress values of the three curves calculated based on the strain and early-age parameters are in good agreement with the temperature stress measured by the temperature stress testing machine,which verifies the method accuracy.When the temperature changes along the concave curve,the law of stress development is in consistent with that of strength.Under this condition,the stress fluctuation is small and the crack prevention safety of the concave type is higher,so the concave type is better.The test results provide a reliable basis and support for temperature control curve design and optimization of concrete dams.展开更多
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R...The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.展开更多
基金partially supported by the Natural Science Foundation of China (Grant Nos.62103052,52272358)partially supported by the Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations.
文摘As an independent sand control unit or a common protective shell of a high-quality screen,the punching screen is the outermost sand retaining unit of the sand control pipe which is used in geothermal well or oil and gas well.However,most screens only consider the influence of the internal sand retaining medium parameters in the sand control performance design while ignoring the influence of the plugging of the punching screen on the overall sand retaining performance of the screen.To explore the clogging mechanism of the punching screen,this paper established the clogging mechanism calculation model of a single punching screen sand control unit by using the computational fluid mechanics-discrete element method(CFD-DEM)combined method.According to the combined motion of particles and fluids,the influence of the internal flow state on particle motion and accumulation was analyzed.The results showed that(1)the clogging process of the punching sand control unit is divided into three stages:initial clogging,aggravation of clogging and stability of clogging.In the initial stage of blockage,coarse particles form a loose bridge structure,and blockage often occurs preferentially at the streamline gathering place below chamfering inside the sand control unit.In the stage of blockage intensification,the particle mass develops into a relatively complete sand bridge,which develops from both ends of the opening to the center of the opening.In the stable plugging stage,the sand deposits show a“fan shape”and form a“V-shaped”gully inside the punching slot element.(2)Under a certain reservoir particle-size distribution,The slit length and opening height have a large influence on the permeability and blockage rate,while the slit width size has little influence on the permeability and blockage rate.The microscopic clogging mechanism and its law of the punching screen prevention unit are proposed in this study,which has some field guidance significance for the design of punching screen and sand prevention selection.
基金Supported by the Special Research Project of the Capital’s Health Development,No.2024-3-7037and the Beijing Clinical Key Specialty Project.
文摘BACKGROUND The severity of nonalcoholic fatty liver disease(NAFLD)and lipid metabolism are related to the occurrence of colorectal polyps.Liver-controlled attenuation parameters(liver-CAPs)have been established to predict the prognosis of hepatic steatosis patients.AIM To explore the risk factors associated with colorectal polyps in patients with NAFLD by analyzing liver-CAPs and establishing a diagnostic model.METHODS Patients who were diagnosed with colorectal polyps in the Department of Gastroenterology of our hospital between June 2021 and April 2022 composed the case group,and those with no important abnormalities composed the control group.The area under the receiver operating characteristic curve was used to predict the diagnostic efficiency.Differences were considered statistically significant when P<0.05.RESULTS The median triglyceride(TG)and liver-CAP in the case group were significantly greater than those in the control group(mmol/L,1.74 vs 1.05;dB/m,282 vs 254,P<0.05).TG and liver-CAP were found to be independent risk factors for colorectal polyps,with ORs of 2.338(95%CI:1.154–4.733)and 1.019(95%CI:1.006–1.033),respectively(P<0.05).And there was no difference in the diagnostic efficacy between liver-CAP and TG combined with liver-CAP(TG+CAP)(P>0.05).When the liver-CAP was greater than 291 dB/m,colorectal polyps were more likely to occur.CONCLUSION The levels of TG and liver-CAP in patients with colorectal polyps are significantly greater than those patients without polyps.Liver-CAP alone can be used to diagnose NAFLD with colorectal polyps.
基金Project supported by the National Natural Science Foundation of China (Grant No.62073045)。
文摘We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
基金supported in part by the Department of Navy award (N00014-22-1-2159)the National Science Foundation under award (ECCS-2227311)。
文摘This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)systems.A model-based probabilistic safe controller is first designed to guarantee probabilisticλ-contractivity(i.e.,stability and invariance)of the LPV system with respect to a given polyhedral safe set.To obviate the requirement of knowing the LPV system model and to bypass identifying its open-loop model,its closed-loop data-based representation is provided in terms of state and scheduling data as well as a decision variable.It is shown that the variance of the closedloop system,as well as the probability of safety satisfaction,depends on the decision variable and the noise covariance.A minimum-variance direct data-driven gain-scheduling safe control design approach is presented next by designing the decision variable such that all possible closed-loop system realizations satisfy safety with the highest confidence level.This minimum-variance approach is a control-oriented learning method since it minimizes the variance of the state of the closed-loop system with respect to the safe set,and thus minimizes the risk of safety violation.Unlike the certainty-equivalent approach that results in a risk-neutral control design,the minimum-variance method leads to a risk-averse control design.It is shown that the presented direct risk-averse learning approach requires weaker data richness conditions than existing indirect learning methods based on system identification and can lead to a lower risk of safety violation.Two simulation examples along with an experimental validation on an autonomous vehicle are provided to show the effectiveness of the presented approach.
基金Supported by National Key R&D Program of China(Grant Nos.2020YFB1709901,2020YFB1709904)National Natural Science Foundation of China(Grant Nos.51975495,51905460)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation of China(Grant No.2021-A1515012286)Science and Technology Plan Project of Fuzhou City of China(Grant No.2022-P-022).
文摘The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies.
基金Meridian Lightweight Technologies Inc.,Strathroy,Ontario Canadathe University of Windsor,Windsor,Ontario,Canada for supporting this workpart of a large project funded by Meridian Lightweight Technologies,Inc.
文摘Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFF0708903)Ningbo Municipal Key Technology Research and Development Program of China(Grant No.2022Z006)Youth Fund of National Natural Science Foundation of China(Grant No.52205043)。
文摘Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value.
基金This work was supported in part by the National Key Research and Development Program of China(2021YFB3202200)Guangdong Basic and Applied Basic Research Foundation(2020B1515120071,2021B1515120017).
文摘In this paper,the leader-follower consensus problem for a multiple flexible manipulator network with actuator failures,parameter uncertainties,and unknown time-varying boundary disturbances is addressed.The purpose of this study is to develop distributed controllers utilizing local interactive protocols that not only suppress the vibration of each flexible manipulator but also achieve consensus on joint angle position between actual followers and the virtual leader.Following the accomplishment of the reconstruction of the fault terms and parameter uncertainties,the adaptive neural network method and parameter estimation technique are employed to compensate for unknown items and bounded disturbances.Furthermore,the Lyapunov stability theory is used to demonstrate that followers’angle consensus errors and vibration deflections in closed-loop systems are uniformly ultimately bounded.Finally,the numerical simulation results confirm the efficacy of the proposed controllers.
基金financially supported by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(Grant No.2021JJLH0078)the Science and Technology Commission of Shanghai Municipality (Grant No.19DZ1207300)the Major Projects of Strategic Emerging Industries in Shanghai。
文摘System identification is a quintessential measure for real-time analysis on kinematic characteristics for deep-sea mining vehicle, and thus to enhance the control performance and testing efficiency. In this study, the system identification algorithm, recursive least square method with instrumental variables(IV-RLS), is tailored to model ‘Pioneer I’, a deep-sea mining vehicle which recently completed a 1305-meter-deep sea trial in the Xisha area of the South China Sea in August, 2021. The algorithm operates on the sensor data collected from the trial to obtain the vehicle’s kinematic model and accordingly design the parameter self-tuning controller. The performances demonstrate the accuracy of the model, and prove its generalization capability. With this model, the optimal controller has been designed, the control parameters have been self-tuned, and the response time and robustness of the system have been optimized,which validates the high efficiency on digital modelling for precision control of deep-sea mining vehicles.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFB1707200)the Key Research and Development Program of Shaanxi Province(Grant No.2020ZDLGY14-06)the Technology Innovation Leading Program of Shaanxi Province(Grant No.2020QFY03-03).
文摘High precision control of substrate tension is the premise and guarantee for producing high-quality products in roll-to-roll precision coating machine.However,the complex relationships in tension system make the problems of decoupling control difficult to be solved,which has limited the improvement of tension control accuracy for the coating machine.Therefore,an ADRC parameters self-tuning decoupling strategy based on RBF neural network is proposed to improve the control accuracy of tension system in this paper.Firstly,a global coupling nonlinear model of the tension system is established according to the composition of the coating machine,and the global coupling model is linearized based on the first-order Taylor formula.Secondly,according to the linear model of the tension system,a parameters self-tuning decoupling algorithm of the tension system is proposed by integrating feedforward control,ADRC and RBF.Finally,the simulation results show that the proposed tension control strategy has good decoupling control performance and effectively improves the tension control accuracy for the coating machine.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
基金This study was supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2021QE030).
文摘In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to)the typical size of oil and water droplets,the residence time and temperature of fluid and the dosage of demulsifier.Using the“Specification for Oil and Gas Separators”as a basis,the control loops and operating parameters of each separator are optimized Considering the Halfaya Oilfield as a testbed,it is shown that the proposed approach can lead to good results in the production stage.
基金supported by the Open Fund of State Key Laboratory of High speed Railway Track Technology(2022YJ127-1)National Natural Science Foundation of China(52104125,41941018)+1 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2022JQ-304)the Young Elite Scientists Sponsorship Program by CAST(No.2021QNRC001)。
文摘In the construction of a soft rock tunnel,it is critical to accurately estimate the pre-stressed anchor support parameters for surrounding rock reinforcement;otherwise,engineering disasters may occur.This paper presents a support parameter selection method that aims to allow deformation as a control objective,which was applied to the tunnel located in Muzailing Highway,Min County,Dingxi City,Gansu Province,China.Through theoretical analysis,we have identified five factors that influence pre-stressing anchorages.The selection of mechanical parameters for the rock mass was carried out using an inverse analysis method.Compared with the measured data,the maximum displacement error of the numerical simulation results was only 0.07 m.The length of anchor cable,circumferential spacing of anchor cable,longitudinal spacing,and pre-stress index are adopted as the input parameters for the support vector machine neural network model based on particle swarm optimization(PSO-LSSVM).Besides,the vault subsidence and the maximum deformation of surrounding rock are considered as output values(performance indices).The goodness of fit between the predicted values and the simulated values exceeds 0.9.Finally,all support parameters within the acceptable deformation range are calculated.The optimal support variables are derived by considering the construction cost and duration.The field application results show that it is feasible to construct the sample database utilizing the numerical simulation approach by taking the displacement as the control target and using the neural network to specify the appropriate support parameters.
基金Project supported by the National Natural Science Foundation of China(Grant No.12102150)the Natural Science Foundation of Jiangsu Province+3 种基金China(Grant Nos.BK20200884 and BK20201414)the Natural Science Foundation of Colleges and Universities in Jiangsu Province,China(Grant No.20KJB130004)China Postdoctoral Science Foundation(Grant No.2021M702444)the Jiangsu’s Mass Entrepreneurship and Innovation Program of Jiangsu Province。
文摘A rotary-concentrating device for thermal conduction is constructed to control and guide thermal energy transmitting in elastic plates.The designed device has the ability of concentrating for thermal conduction and controlling the processes of thermal diffusion in a plate.The multilayered isotropic material properties of the rotary-concentrating device are derived based on the transformation and rotary medium method and a rotation parameter to control the thermal diffusion process is introduced.The efficiency of the rotary-concentrating device for thermal conduction is verified.Stability of temperature fields in a plate with the rotary-concentrating device is analyzed to study the performance of rotary-concentrating.Numerical examples show that the constructed rotary-concentrating device for thermal conduction can effectively rotate and focus on the thermal energy into the device for a wide range of diffusion temperatures,which can enhance the thermal conduction.Therefore,this study can provide a theoretical support for potential applications in fields of energy harvesting and thermal conduction control.
基金funded by the Universiti Kebangsaan Malaysia,Geran Galakan Penyelidikan,GGP-2020-040.
文摘A memory-type control chart utilizes previous information for chart construction.An example of a memory-type chart is an exponentially-weighted moving average(EWMA)control chart.The EWMA control chart is well-known and widely employed by practitioners for monitoring small and moderate process mean shifts.Meanwhile,the EWMA median chart is robust against outliers.In light of this,the economic model of the EWMA and EWMA median control charts are commonly considered.This study aims to investigate the effect of cost parameters on the out-of-control average run lengthðARL_(1)Þin implementing EWMA and EWMA median control charts.The economic model was used to compute the ARL_(1) parameter.The 14 input parameters were identified and the analysis was carried out based on the one-parameter-at-a-time basis.When the input parameters change based on a predetermined percentage,the ARL_(1) is affected.According to the results of the EWMA chart,nine input parameters had an effect andfive input parameters had no effect on the ARL_(1) parameter.Further,only seven of the 14 input parameters had an effect on the ARL_(1) of the EWMA median chart.However,the effect of each input parameter on the ARL_(1) was different.Moreover,the ARL_(1) for the EWMA median chart was smaller than the EWMA chart.This analysis is crucial to observe and determine the input parameters that have a significant impact on the ARL_(1) of the EMWA and EWMA median control charts.Hence,practitioners can obtain an overview of the influence of the input parameters on the ARL_(1) when implementing the EWMA and EWMA median control charts.
基金support received from the National Natural Science Foundation of China(Grant No.62073206)Technical Innovation Guidance Project of Shaanxi Province(Grant No.2020CGHJ-007).
文摘The basis weight control loop of the papermaking process is a non-linear system with time-delay and time-varying.It is impractical to identify a model that can restore the model of real papermaking process.Determining a more accurate identification model is very important for designing the controller of the control system and maintaining the stable operation of the papermaking process.In this study,a strange nonchaotic particle swarm optimization(SNPSO)algorithm is proposed to identify the models of real papermaking processes,and this identification ability is significantly enhanced compared with particle swarm optimization(PSO).First,random particles are initialized by strange nonchaotic sequences to obtain high-quality solutions.Furthermore,the weight of linear attenuation is replaced by strange nonchaotic sequence and the time-varying acceleration coefficients and a mutation rule with strange nonchaotic characteristics are utilized in SNPSO.The above strategies effectively improve the global and local search ability of particles and the ability to escape from local optimization.To illustrate the effectiveness of SNPSO,step response data are used to identify the models of real industrial processes.Compared with classical PSO,PSO with timevarying acceleration coefficients(PSO-TVAC)and modified particle swarm optimization(MPSO),the simulation results demonstrate that SNPSO has stronger identification ability,faster convergence speed,and better robustness.
基金National Key R&D Plan Project(No.2021YFC3090102)。
文摘Temperature control curve is the key to achieving temperature control and crack prevention of high concrete dam during construction,and its rationality depends on the accurate measurement of temperature stress.With the simulation testing machine for the temperature stress,in the present study,we carried out the deformation process tests of concrete under three temperature curves:convex,straight and concave.Besides,we not only measured the early-age elastic modulus,creep parameters and stress process,but also proposed the preferred type.The results show that at early age,higher temperature always leads to greater elastic modulus and smaller creep.However,the traditional indoor experiments have underestimated the elastic modulus and creep development at early age,which makes the calculated value of temperature stress too small,thus increasing the cracking risk.In this study,the stress values of the three curves calculated based on the strain and early-age parameters are in good agreement with the temperature stress measured by the temperature stress testing machine,which verifies the method accuracy.When the temperature changes along the concave curve,the law of stress development is in consistent with that of strength.Under this condition,the stress fluctuation is small and the crack prevention safety of the concave type is higher,so the concave type is better.The test results provide a reliable basis and support for temperature control curve design and optimization of concrete dams.
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42077267,42277174 and 52074164)+2 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(No.KFJJ21-02Z)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.