Based on the singular value decomposition theory,this paper analyzed the mechanism of escaping/avoiding singularity using generalized and weighted singularity-robust steering laws for a spacecraft that uses single gim...Based on the singular value decomposition theory,this paper analyzed the mechanism of escaping/avoiding singularity using generalized and weighted singularity-robust steering laws for a spacecraft that uses single gimbal control moment gyros (SGCMGs) as the actuator for the attitude control system.The expression of output-torque error is given at the point of singularity,proving the incompatible relationship between the gimbal rate and the output-torque error.The method of establishing a balance between the gimbal rate and the output-torque error is discussed,and a new steering law is designed.Simulation results show that the proposed steering law can effectively drive SGCMGs to escape away from singularities.展开更多
A practical survey on engineering implementation of flight control laws on helicopter engineering simulators is proposed.Advances of helicopter engineering simulators are introduced.Practical flight control technologi...A practical survey on engineering implementation of flight control laws on helicopter engineering simulators is proposed.Advances of helicopter engineering simulators are introduced.Practical flight control technologies are reviewed,with an emphasis on discussing the corresponding engineering simulation programs.Finally,the difficulties of implementing advanced control technologies are addressed,and the future development of helicopter engineering simulators are highlighted.展开更多
A method of sliding mode variable structure control for the missile body being a time varying system is presented. A remote control guidance law is designed. The method has strong robustness to target' s maneuver. To...A method of sliding mode variable structure control for the missile body being a time varying system is presented. A remote control guidance law is designed. The method has strong robustness to target' s maneuver. To reduce the chattering phenomena, quasi-sliding mode variable structure control method is used. Simulation results show that the proposed method has small miss distance for any kind of maneuvering targets and requires small control energy.展开更多
This paper presents the analysis of the control energy consumed in model reference adaptive control(MRAC)schemes using fractional adaptive laws, through simulation studies. The analysis is focused on the energy spent ...This paper presents the analysis of the control energy consumed in model reference adaptive control(MRAC)schemes using fractional adaptive laws, through simulation studies. The analysis is focused on the energy spent in the control signal represented by means of the integral of the squared control input(ISI). Also, the behavior of the integral of the squared control error(ISE) is included in the analysis.The orders of the adaptive laws were selected by particle swarm optimization(PSO), using an objective function including the ISI and the ISE, with different weighting factors. The results show that, when ISI index is taken into account in the optimization process to determine the orders of adaptive laws,the resulting values are fractional, indicating that control energy of the scheme might be better managed if fractional adaptive laws are used.展开更多
This paper develops a robust control methodology for a class of morphing aircraft,which is called innovative control effector(ICE) aircraft.For the ICE morphing aircraft,the distributed arrays of hundreds of shape-c...This paper develops a robust control methodology for a class of morphing aircraft,which is called innovative control effector(ICE) aircraft.For the ICE morphing aircraft,the distributed arrays of hundreds of shape-change devices are employed to stabilize and maneuver the air vehicle.Because the morphing aircraft have the inherent uncertainty and varying dynamics due to the alteration of their configuration,a desired control performance can not be satisfied with a fixed feedback controller.Therefore,a novel control framework including an adaptive flight control law and an adaptive allocation algorithm is proposed.Firstly,a state feedback adaptive control law is designed to guarantee closed-loop stability and state tracking in the presence of uncertain dynamics caused by the wing shape change due to different flight missions.In the control allocation,many distributed arrays are managed in an optimal way to improve the robustness of the system.The scheme is used to an uncertain morphing aircraft model,and the simulation results demonstrate their performance.展开更多
A visual servoing tracking controller is proposed based on the sliding mode control theory in order to achieve strong robustness against parameter variations and external disturbances. A sliding plane with time delay ...A visual servoing tracking controller is proposed based on the sliding mode control theory in order to achieve strong robustness against parameter variations and external disturbances. A sliding plane with time delay compensation is presented by the pre-estimate of states. To reduce the chattering of the sliding mode controller, a modified exponential reaching law and hyperbolic tangent function are applied to the design of visual controller and robot joint controller. Simulation results show that the visual servoing control scheme is robust and has good tracking performance.展开更多
The boundary control of MKdV-Burgers equation was considered by feedback control on the domain [0,1]. The existence of the solution of MKdV-Burgers equation with the feedback control law was proved. On the base, prior...The boundary control of MKdV-Burgers equation was considered by feedback control on the domain [0,1]. The existence of the solution of MKdV-Burgers equation with the feedback control law was proved. On the base, priori estimates for the solution was given. At last, the existence of the weak solution of MKdV-Burgers equation was proved and the global-exponential and asymptotic stability of the solution of MKdV-Burgers equation was given.展开更多
In this article, an adaptive fuzzy sliding mode control (AFSMC) scheme is derived for robotic systems. In the AFSMC design, the sliding mode control (SMC) concept is combined with fuzzy control strategy to obtain a mo...In this article, an adaptive fuzzy sliding mode control (AFSMC) scheme is derived for robotic systems. In the AFSMC design, the sliding mode control (SMC) concept is combined with fuzzy control strategy to obtain a model-free fuzzy sliding mode control. The equivalent controller has been substituted for by a fuzzy system and the uncertainties are estimated on-line. The approach of the AFSMC has the learning ability to generate the fuzzy control actions and adaptively compensates for the uncertainties. Despite the high nonlinearity and coupling effects, the control input of the proposed control algorithm has been decoupled leading to a simplified control mechanism for robotic systems. Simulations have been carried out on a two link planar robot. Results show the effectiveness of the proposed control system.展开更多
The impulsive control of chaotic systems, which are subjected to unbounded exogenous perturbations, is considered. By using the theory of impulsive differential equation together with the fuzzy control technique, the ...The impulsive control of chaotic systems, which are subjected to unbounded exogenous perturbations, is considered. By using the theory of impulsive differential equation together with the fuzzy control technique, the authors propose an impulsive robust chaos controlling criterion expressed as linear matrix inequalities (LMIs). Based on the proposed control criterion, the procedure for designing impulsive controllers of common (perturbed) chaotic systems is provided. Finally, a numerical example is given to demonstrate the obtained theoretical result.展开更多
In modern vehicles, electronic throttle(ET) has been widely utilized to control the airflow into gasoline engine. To solve the control difficulties with an ET, such as strong nonlinearity,unknown model parameters and ...In modern vehicles, electronic throttle(ET) has been widely utilized to control the airflow into gasoline engine. To solve the control difficulties with an ET, such as strong nonlinearity,unknown model parameters and input saturation constraints,an adaptive sliding-mode tracking control strategy for an ET is presented. Compared with the existing control strategies for an ET, input saturation constraints and parameter uncertainties are adequately considered in the proposed control strategy. At first, the nonlinear dynamic model for control of an ET is described. According to the dynamical model, the nonlinear adaptive sliding-mode tracking control method is presented,where parameter adaptive laws and auxiliary design system are employed. Parameter adaptive law is given to estimate the unknown parameter with an ET. An auxiliary system is designed,and its state is utilized in the tracking control method to handle the input saturation. Stability proof and analysis of the adaptive sliding-mode control method is performed by using Lyapunov stability theory. Finally, the reliability and feasibility of the proposed control strategy are evaluated by computer simulation.Simulation research shows that the proposed sliding-mode control strategy can provide good control performance for an ET.展开更多
A modified adaptive two-phase sliding mode controller for the synchronous motor drive that is highly robust to uncertain- ties and external disturbances is proposed in this paper.The proposed controller uses two-phase...A modified adaptive two-phase sliding mode controller for the synchronous motor drive that is highly robust to uncertain- ties and external disturbances is proposed in this paper.The proposed controller uses two-phase sliding mode control (SMC) where the 1st phase mainly controls the system in steady states and disturbed states-it is a smoothing phase.The 2nd phase is used mainly in the case of disturbed states.Also,it is an autotuning phase and uses a simple adaptive algorithm to tune the gain of conventional variable structure control (VSC).The modified controller is useful in position control of a permanent magnet synchronous drive.展开更多
In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws...In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws instead of a single one, the control performance can be improved and the region of attraction can be enlarged compared with the existing model predictive control (MPC) approaches. Moreover, a synthesis approach of MPC is developed to achieve high performance with lower on-line computational burden. The effectiveness of the proposed approach is verified by simulation examples.展开更多
To counter BTT guidance mode, new relative motion equations of the targetaircraft and the attack aircraft are proposed. The inverse system theory of the nonlinearcontrol is used, and the direct BTT-180 guidance comman...To counter BTT guidance mode, new relative motion equations of the targetaircraft and the attack aircraft are proposed. The inverse system theory of the nonlinearcontrol is used, and the direct BTT-180 guidance command is solved, which can operatethe attack aircraft to automatically complete the flight mission of the preceding stage ofthe terminal weapon delivery, and thus the automatic attack is extended from the stage ofthe terminal weapon delivery to the preceding stage of the terminal weapon delivery.展开更多
基金supported by the National Natural Science Foundation of China (10872029)the Excellent Young Scholars Research Fund of the Beijing Institute of Technology (2007YS0202)
文摘Based on the singular value decomposition theory,this paper analyzed the mechanism of escaping/avoiding singularity using generalized and weighted singularity-robust steering laws for a spacecraft that uses single gimbal control moment gyros (SGCMGs) as the actuator for the attitude control system.The expression of output-torque error is given at the point of singularity,proving the incompatible relationship between the gimbal rate and the output-torque error.The method of establishing a balance between the gimbal rate and the output-torque error is discussed,and a new steering law is designed.Simulation results show that the proposed steering law can effectively drive SGCMGs to escape away from singularities.
基金supported by the Fundamental Research Funds for the Central Universities (No. XBC16010)
文摘A practical survey on engineering implementation of flight control laws on helicopter engineering simulators is proposed.Advances of helicopter engineering simulators are introduced.Practical flight control technologies are reviewed,with an emphasis on discussing the corresponding engineering simulation programs.Finally,the difficulties of implementing advanced control technologies are addressed,and the future development of helicopter engineering simulators are highlighted.
文摘A method of sliding mode variable structure control for the missile body being a time varying system is presented. A remote control guidance law is designed. The method has strong robustness to target' s maneuver. To reduce the chattering phenomena, quasi-sliding mode variable structure control method is used. Simulation results show that the proposed method has small miss distance for any kind of maneuvering targets and requires small control energy.
基金supported by CONICYT-Chile,under the Basal Financing Program(FB0809)Advanced Mining Technology Center,FONDECYT Project(1150488)+1 种基金Fractional Error Models in Adaptive Control and Applications,FONDECYT(3150007)Postdoctoral Program 2015
文摘This paper presents the analysis of the control energy consumed in model reference adaptive control(MRAC)schemes using fractional adaptive laws, through simulation studies. The analysis is focused on the energy spent in the control signal represented by means of the integral of the squared control input(ISI). Also, the behavior of the integral of the squared control error(ISE) is included in the analysis.The orders of the adaptive laws were selected by particle swarm optimization(PSO), using an objective function including the ISI and the ISE, with different weighting factors. The results show that, when ISI index is taken into account in the optimization process to determine the orders of adaptive laws,the resulting values are fractional, indicating that control energy of the scheme might be better managed if fractional adaptive laws are used.
基金supported by the National Natural Science Foundation of China(61074063)
文摘This paper develops a robust control methodology for a class of morphing aircraft,which is called innovative control effector(ICE) aircraft.For the ICE morphing aircraft,the distributed arrays of hundreds of shape-change devices are employed to stabilize and maneuver the air vehicle.Because the morphing aircraft have the inherent uncertainty and varying dynamics due to the alteration of their configuration,a desired control performance can not be satisfied with a fixed feedback controller.Therefore,a novel control framework including an adaptive flight control law and an adaptive allocation algorithm is proposed.Firstly,a state feedback adaptive control law is designed to guarantee closed-loop stability and state tracking in the presence of uncertain dynamics caused by the wing shape change due to different flight missions.In the control allocation,many distributed arrays are managed in an optimal way to improve the robustness of the system.The scheme is used to an uncertain morphing aircraft model,and the simulation results demonstrate their performance.
基金supported by China Postdoctoral Science Founda-tion (No. 20080441093)Key Laboratory Foundation of Liaoning Province (No. 2008S088).
文摘A visual servoing tracking controller is proposed based on the sliding mode control theory in order to achieve strong robustness against parameter variations and external disturbances. A sliding plane with time delay compensation is presented by the pre-estimate of states. To reduce the chattering of the sliding mode controller, a modified exponential reaching law and hyperbolic tangent function are applied to the design of visual controller and robot joint controller. Simulation results show that the visual servoing control scheme is robust and has good tracking performance.
基金Project supported by the National Natural Science Foundation of China(No.10071033)the Natural Science Foundation of Jiangsu Province(No.BK2002003)
文摘The boundary control of MKdV-Burgers equation was considered by feedback control on the domain [0,1]. The existence of the solution of MKdV-Burgers equation with the feedback control law was proved. On the base, priori estimates for the solution was given. At last, the existence of the weak solution of MKdV-Burgers equation was proved and the global-exponential and asymptotic stability of the solution of MKdV-Burgers equation was given.
文摘In this article, an adaptive fuzzy sliding mode control (AFSMC) scheme is derived for robotic systems. In the AFSMC design, the sliding mode control (SMC) concept is combined with fuzzy control strategy to obtain a model-free fuzzy sliding mode control. The equivalent controller has been substituted for by a fuzzy system and the uncertainties are estimated on-line. The approach of the AFSMC has the learning ability to generate the fuzzy control actions and adaptively compensates for the uncertainties. Despite the high nonlinearity and coupling effects, the control input of the proposed control algorithm has been decoupled leading to a simplified control mechanism for robotic systems. Simulations have been carried out on a two link planar robot. Results show the effectiveness of the proposed control system.
基金Project supported by the Key Youth Project of Southwest University for Nationalities of China and the Natural Science Foundation of the State Nationalities Affairs Commission of China (Grant Nos 07XN05 and 05XN07).
文摘The impulsive control of chaotic systems, which are subjected to unbounded exogenous perturbations, is considered. By using the theory of impulsive differential equation together with the fuzzy control technique, the authors propose an impulsive robust chaos controlling criterion expressed as linear matrix inequalities (LMIs). Based on the proposed control criterion, the procedure for designing impulsive controllers of common (perturbed) chaotic systems is provided. Finally, a numerical example is given to demonstrate the obtained theoretical result.
基金partially supported by the National Natural Science Foundation of China(61773189)Natural Science Fundamental of Liaoning Province(20170540443)the Program for Liaoning Innovative Research Team in University(LT2016006)
文摘In modern vehicles, electronic throttle(ET) has been widely utilized to control the airflow into gasoline engine. To solve the control difficulties with an ET, such as strong nonlinearity,unknown model parameters and input saturation constraints,an adaptive sliding-mode tracking control strategy for an ET is presented. Compared with the existing control strategies for an ET, input saturation constraints and parameter uncertainties are adequately considered in the proposed control strategy. At first, the nonlinear dynamic model for control of an ET is described. According to the dynamical model, the nonlinear adaptive sliding-mode tracking control method is presented,where parameter adaptive laws and auxiliary design system are employed. Parameter adaptive law is given to estimate the unknown parameter with an ET. An auxiliary system is designed,and its state is utilized in the tracking control method to handle the input saturation. Stability proof and analysis of the adaptive sliding-mode control method is performed by using Lyapunov stability theory. Finally, the reliability and feasibility of the proposed control strategy are evaluated by computer simulation.Simulation research shows that the proposed sliding-mode control strategy can provide good control performance for an ET.
文摘A modified adaptive two-phase sliding mode controller for the synchronous motor drive that is highly robust to uncertain- ties and external disturbances is proposed in this paper.The proposed controller uses two-phase sliding mode control (SMC) where the 1st phase mainly controls the system in steady states and disturbed states-it is a smoothing phase.The 2nd phase is used mainly in the case of disturbed states.Also,it is an autotuning phase and uses a simple adaptive algorithm to tune the gain of conventional variable structure control (VSC).The modified controller is useful in position control of a permanent magnet synchronous drive.
基金supported by National Natural Science Foundation of China (No. 60934007, No. 61074060)China Postdoctoral Science Foundation (No. 20090460627)+1 种基金Shanghai Postdoctoral Scientific Program (No. 10R21414600)China Postdoctoral Science Foundation Special Support (No. 201003272)
文摘In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws instead of a single one, the control performance can be improved and the region of attraction can be enlarged compared with the existing model predictive control (MPC) approaches. Moreover, a synthesis approach of MPC is developed to achieve high performance with lower on-line computational burden. The effectiveness of the proposed approach is verified by simulation examples.
文摘To counter BTT guidance mode, new relative motion equations of the targetaircraft and the attack aircraft are proposed. The inverse system theory of the nonlinearcontrol is used, and the direct BTT-180 guidance command is solved, which can operatethe attack aircraft to automatically complete the flight mission of the preceding stage ofthe terminal weapon delivery, and thus the automatic attack is extended from the stage ofthe terminal weapon delivery to the preceding stage of the terminal weapon delivery.