This problem is a nonlinear control system with variable-domain distributed parameter. In this paper, the numerical simulation of the dynamic functions has been carried out by transforming this problem to a fixed-dom...This problem is a nonlinear control system with variable-domain distributed parameter. In this paper, the numerical simulation of the dynamic functions has been carried out by transforming this problem to a fixed-domain initial-boundary value problem, and the numerical results are obtained: (1) Thedistribution of temperature rises, the ablation amount and velocity of the thermal shield vary with the time; (2) The maximum ablating velocity, the time of the ablation beginning and ending related to thetranspiration quantity. This method succeeds in overcoming the difficulty brought up by variable domain.On the other hand, the critical transpiration quantity for the surface to start ablating, the maximum ablating velocity and time of the ablation ending are obtained theoretically.展开更多
The transpiration cooling control system of the thermal protective shield with surface ablation is a nonlinear control system of distributed parameter with moving boundary.As far as the boundary conditions the third k...The transpiration cooling control system of the thermal protective shield with surface ablation is a nonlinear control system of distributed parameter with moving boundary.As far as the boundary conditions the third kind and a one-dimensional incompressible coolant flow under constant transpiration mass flux are concerned,this paper transforms the definite solution problem into the second-type Volterra integral equations,and applies them directly to compute the shield ablation law.Investigation of the system's control by transpiration mass flux,ablation amount and ablation velocity varying with time,time of the ablation's beginning and ending,etc.,are presented.展开更多
文摘This problem is a nonlinear control system with variable-domain distributed parameter. In this paper, the numerical simulation of the dynamic functions has been carried out by transforming this problem to a fixed-domain initial-boundary value problem, and the numerical results are obtained: (1) Thedistribution of temperature rises, the ablation amount and velocity of the thermal shield vary with the time; (2) The maximum ablating velocity, the time of the ablation beginning and ending related to thetranspiration quantity. This method succeeds in overcoming the difficulty brought up by variable domain.On the other hand, the critical transpiration quantity for the surface to start ablating, the maximum ablating velocity and time of the ablation ending are obtained theoretically.
文摘The transpiration cooling control system of the thermal protective shield with surface ablation is a nonlinear control system of distributed parameter with moving boundary.As far as the boundary conditions the third kind and a one-dimensional incompressible coolant flow under constant transpiration mass flux are concerned,this paper transforms the definite solution problem into the second-type Volterra integral equations,and applies them directly to compute the shield ablation law.Investigation of the system's control by transpiration mass flux,ablation amount and ablation velocity varying with time,time of the ablation's beginning and ending,etc.,are presented.