With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as ...With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.展开更多
In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations we...In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations were used to study the thermal reactions of pyrene,1-methylpyrene,7,8,9,10-tetrahydrobenzopyrene,and mixtures of pyrene with 1-octene,cyclohexene,or styrene.The reactant conversion rates,reaction rates,and product distributions were calculated and compared,and the mechanisms were analyzed and discussed.The results demonstrated that methyl and naphthenic structures in aromatics might improve the conversion rates of reactants in hydrogen transfer processes,but their steric hindrances prohibited the generation of high polymers.The naphthenic structures could generate more free radicals and presented a more obvious inhibition effect on the condensation of polymers compared with the methyl side chains.It was discovered that when different olefins were mixed with pyrene,1-octene primarily underwent pyrolysis reactions,whereas cyclohexene mainly underwent hydrogen transfer reactions with pyrene and styrene,mostly producing superconjugated biradicals through condensation reactions with pyrene.In the mixture systems,the olefins scattered aromatic molecules,hindering the formation of pyrene trimers and higher polymers.According to the reactive molecular dynamics simulations,styrene may enhance the yield of dimer and enable the controlled polycondensation of pyrene.展开更多
The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excel...The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excellent biological affinity and stability to the SERS optical fiber probes. Au NRs were synthesized by seed growth method. The synergistic effect between AgNO_(3) and surfactant was investigated, and the highest yield was found when AgNO_(3) was 500 uL. Meanwhile, different SERS optical fiber probes were obtained by selecting silane coupling agent, polyelectrolyte multilayer and graphene oxide(GO) to treat quartz fiber. It was found that the SERS optical fiber probes obtained by the self-assembled on polyelectrolyte multilayers method performed better than those by other methods. In addition, Mapping was combined with finite element simulation to analyze the electromagnetic field distribution at the fiber end face.The electromagnetic field distribution of Au NRs was investigated, the difference of electromagnetic field intensity around the Au NRs with different arrangements was compared, the strongest signal was obtained when the Au NRs were head-to-head. Finally, sensitivity of the optimized SERS optical fiber probes could reach 10^(-9)mol/L, with excellent stability and repeatability.展开更多
We investigated the electric controllable spin-filtering effect in a zigzag phosphorene nanoribbon(ZPNR) based normal–antiferromagnet–normal junction. Two ferromagnets are closely coupled to the edges of the nanorib...We investigated the electric controllable spin-filtering effect in a zigzag phosphorene nanoribbon(ZPNR) based normal–antiferromagnet–normal junction. Two ferromagnets are closely coupled to the edges of the nanoribbon and form the edge-to-edge antiferromagnetism. Under an in-plane electric field, the two degenerate edge bands of the edge-to-edge antiferromagnet split into four spin-polarized sub-bands and a 100% spin-polarized current can be easily induced with the maximal conductance 2e~2/h. The spin polarization changes with the strength of the electric field and the exchange field,and changes sign at opposite electric fields. The spin-polarized current switches from one edge to the other by reversing the direction of the electric field. The edge current can also be controlled spatially by changing the electric potential of the scattering region. The manipulation of edge current is useful in spin-transfer-torque magnetic random-access memory and provides a practical way to develop controllable spintronic devices.展开更多
Phase-change material(PCM)is widely used in thermal management due to their unique thermal behavior.However,related research in thermal rectifier is mainly focused on exploring the principles at the fundamental device...Phase-change material(PCM)is widely used in thermal management due to their unique thermal behavior.However,related research in thermal rectifier is mainly focused on exploring the principles at the fundamental device level,which results in a gap to real applications.Here,we propose a controllable thermal rectification design towards building applications through the direct adhesion of composite thermal rectification material(TRM)based on PCM and reduced graphene oxide(rGO)aerogel to ordinary concrete walls(CWs).The design is evaluated in detail by combining experiments and finite element analysis.It is found that,TRM can regulate the temperature difference on both sides of the TRM/CWs system by thermal rectification.The difference in two directions reaches to 13.8 K at the heat flow of 80 W/m^(2).In addition,the larger the change of thermal conductivity before and after phase change of TRM is,the more effective it is for regulating temperature difference in two directions.The stated technology has a wide range of applications for the thermal energy control in buildings with specific temperature requirements.展开更多
Electronic medical records (EMR) facilitate the sharing of medical data, but existing sharing schemes suffer fromprivacy leakage and inefficiency. This article proposes a lightweight, searchable, and controllable EMR ...Electronic medical records (EMR) facilitate the sharing of medical data, but existing sharing schemes suffer fromprivacy leakage and inefficiency. This article proposes a lightweight, searchable, and controllable EMR sharingscheme, which employs a large attribute domain and a linear secret sharing structure (LSSS), the computationaloverhead of encryption and decryption reaches a lightweight constant level, and supports keyword search andpolicy hiding, which improves the high efficiency of medical data sharing. The dynamic accumulator technologyis utilized to enable data owners to flexibly authorize or revoke the access rights of data visitors to the datato achieve controllability of the data. Meanwhile, the data is re-encrypted by Intel Software Guard Extensions(SGX) technology to realize resistance to offline dictionary guessing attacks. In addition, blockchain technology isutilized to achieve credible accountability for abnormal behaviors in the sharing process. The experiments reflectthe obvious advantages of the scheme in terms of encryption and decryption computation overhead and storageoverhead, and theoretically prove the security and controllability in the sharing process, providing a feasible solutionfor the safe and efficient sharing of EMR.展开更多
The 20,000-ton combined train running has greatly promoted China’s heavy-haul railway transportation capability. The application of controllable train-tail devices could improve the braking wave of the train and brak...The 20,000-ton combined train running has greatly promoted China’s heavy-haul railway transportation capability. The application of controllable train-tail devices could improve the braking wave of the train and braking synchronism, and alleviate longitudinal impulse.However, the characteristics of the controllable train-tail device such as exhaust area, exhaust duration and exhaust action time are not uniform in practice, and their effects on the longitudinal impulse of the train are not apparent,which is worth studying. In this work, according to the formation of the Datong-Qinhuangdao Railway, the train air brake and longitudinal dynamics simulation system(TABLDSS) is applied to establish a 20,000-ton combined train model with the controllable train-tail device, and the braking characteristics and the longitudinal impulse of the train are calculated synchronously with changing the air exhaust time, exhaust area, and action lag time under initial braking. The results show that the maximum coupler force of the combined train will decrease with the extension of the continuous exhaust time, while the total exhaust time of the controllable train-tail device remains unchanged;the maximum coupler force of the combined train reduces by32.5% with the exhaust area increasing from 70% to 140%;when the lag time between the controllable train-tail device and the master locomotive is more than 1.5 s, the maximum coupler force of the train increases along with the time difference enlargement.展开更多
Superconducting YBa_(2)Cu_(3)O_(7−x)(YBCO)bulks have promising applications in quasi-permanent magnets,levitation,etc.Recently,a new way of fabricating porous YBCO bulks,named direct-ink-writing(DIW)3D-printing method...Superconducting YBa_(2)Cu_(3)O_(7−x)(YBCO)bulks have promising applications in quasi-permanent magnets,levitation,etc.Recently,a new way of fabricating porous YBCO bulks,named direct-ink-writing(DIW)3D-printing method,has been reported.In this method,the customized precursor paste and programmable shape are two main advantages.Here,we have put forward a new way to customize the YBCO 3D-printing precursor paste which is doped with Al_(2)O_(3)nanoparticles to obtain YBCO with higher thermal conductivity.The great rheological properties of precursor paste after being doped with Al_(2)O_(3)nanoparticles can help the macroscopic YBCO samples with high thermal conductivity fabricated stably with high crystalline and lightweight properties.Test results show that the peak thermal conductivity of Al_(2)O_(3)-doped YBCO can reach twice as much as pure YBCO,which makes a great effort to reduce the quench propagation speed.Based on the microstructure analysis,one can find that the thermal conductivity of Al_(2)O_(3)-doped YBCO has been determined by its components and microstructures.In addition,a macroscopic theoretical model has been proposed to assess the thermal conductivity of different microstructures,whose calculated results take good agreement with the experimental results.Meanwhile,a microstructure with high thermal conductivity has been found.Finally,a macroscopic YBCO bulk with the presented high thermal conductivity microstructure has been fabricated by the Al_(2)O_(3)-doped method.Compared with YBCO fabricated by the traditional 3D-printed,the Al_(2)O_(3)-doped structural YBCO bulks present excellent heat transfer performances.Our customized design of 3D-printing precursor pastes and novel concept of structural design for enhancing the thermal conductivity of YBCO superconducting material can be widely used in other DIW 3D-printing materials.展开更多
Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and...Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and a suitable material for mimicking basement membrane are currently lacking.Here,we present an innovative biomimetic controllable strain membrane(BCSM)at an air–liquid interface(ALI)to reconstruct alveolar respiration.The BCSM consists of a high-precision three-dimensional printing melt-electrowritten polycaprolactone(PCL)mesh,coated with a hydrogel substrate—to simulate the important functions(such as stiffness,porosity,wettability,and ALI)of alveolar microenvironments,and seeded pulmonary epithelial cells and vascular endothelial cells on either side,respectively.Inspired by papercutting,the BCSM was fabricated in the plane while it operated in three dimensions.A series of the topological structure of the BCSM was designed to control various local-area strain,mimicking alveolar varied deformation.Lopinavir/ritonavir could reduce Lamin A expression under over-stretch condition,which might be effective in preventing ventilator-induced lung injury.The biomimetic lung-unit model with BCSM has broader application prospects in alveoli-related research in the future,such as in drug toxicology and metabolism.展开更多
Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform Pd...Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform PdS and PdS_(2)nanofilms(NFs)remains an enormous challenge.In this work,2-inch wafer-scale PdS and PdS_(2) NFs with excellent stability can be controllably prepared via chemical vapor deposition combined with electron beam evaporation technique.The thickness of the pre-deposited Pd film and the sulfurization temperature are critical for the precise synthesis of PdS and PdS_(2) NFs.A corresponding growth mechanism has been proposed based on our experimental results and Gibbs free energy calculations.The electrical transport properties of PdS and PdS_(2) NFs were explored by conductive atomic force microscopy.Our findings have achieved the controllable growth of PdS and PdS_(2) NFs,which may provide a pathway to facilitate PdS and PdS_(2) based applications for next-generation high performance optoelectronic devices.展开更多
Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent...Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent heat spontaneously as the temperature below the phase transition temperature,rendering thermal energy storage and release uncontrollable,thus hindering their practical application in time and space.Herein,we developed erythritol/sodium carboxymethylcellulose/tetrasodium ethylenediaminetetraacetate(ERY/CMC/EDTA-4Na)composite PCMs with novel spatiotemporal thermal energy storage properties,defined as spatiotemporal PCMs(STPCMs),which exhibit the capacity of thermal energy long-term storage and controllable release.Our results show that the composite PCMs are unable to lose latent heat due to spontaneous crystallization during cooling,but can controllably release thermal energy through cold crystallization during reheating.The cold-crystallization temperature and enthalpy of composite PCMs can be adjusted by proportional addition of EDTA-4Na to the composite.When the mass fractions of CMC and EDTA-4Na are both 10%,the composite PCMs can exhibit the optical coldcrystallization temperature of 51.7℃ and enthalpy of 178.1 J/g.The supercooled composite PCMs without latent heat release can be maintained at room temperature(10-25℃)for up to more than two months,and subsequently the stored latent heat can be controllably released by means of thermal triggering or heterogeneous nucleation.Our findings provide novel insights into the design and construction of new PCMs with spatiotemporal performance of thermal energy long-term storage and controllable release,and consequently open a new door for the development of advanced solar thermal utilization techniques on the basis of STPCMs.展开更多
A novel 4H-Si C trench insulated gate bipolar transistor(IGBT)with a controllable hole-extracting(CHE)path is proposed and investigated in this paper.The CHE path is controlled by metal semiconductor gate(MES gate)and...A novel 4H-Si C trench insulated gate bipolar transistor(IGBT)with a controllable hole-extracting(CHE)path is proposed and investigated in this paper.The CHE path is controlled by metal semiconductor gate(MES gate)and metal oxide semiconductor gate(MOS gate)in the p-shield region.The grounded p-shield region can significantly suppress the high electric field around gate oxide in Si C devices,but it weakens the conductivity modulation in the Si C trench IGBT by rapidly sweeping out holes.This effect can be eliminated by introducing the CHE path.The CHE path is pinched off by the high gate bias voltage at on-state to maintain high conductivity modulation and obtain a comparatively low on-state voltage(VON).During the turn-off transient,the CHE path is formed,which contributes to a decreased turn-off loss(EOFF).Based on numerical simulation,the EOFFof the proposed IGBT is reduced by 89%compared with the conventional IGBT at the same VONand the VONof the proposed IGBT is reduced by 50%compared to the grounded p-shield IGBT at the same EOFF.In addition,the average power reduction for the proposed device can be 51.0%to 81.7%and 58.2%to 72.1%with its counterparts at a wide frequency range of 500 Hz to 10 k Hz,revealing a great improvement of frequency characteristics.展开更多
Objective:The purpose of the study was to assess the clinical efficacy and safety of a combined perfusion suction platform with pressure feedback control function and an ureteroscopic suction sheath that can measure t...Objective:The purpose of the study was to assess the clinical efficacy and safety of a combined perfusion suction platform with pressure feedback control function and an ureteroscopic suction sheath that can measure the ureteropelvic pressure in implementing lithotripsies.Methods:Fifty-two patients who underwent lithotripsy under intelligent monitoring of ureteral intraluminal pressure from June 2016 to January 2018 were retrospectively recruited.The inclusion standard was stone diameter>1.5 cm but<2.5 cm.After the 12/14 Fr suction sheath was placed,manometer interface and suction interface of the sheath were connected to the platform via the pressure sensor and suction tube,respectively.The ureteroscope was connected to the platform perfusion pump,and the crushed stones were aspirated out under negative pressure.Results:According to the location of the stone,21(40.4%)cases were classified as upper ureteral stones,19(36.5%)were midureteral stones,and 12(23.1%)were lower ureteral stones.Forty-seven patients underwent successful primary sheath placement and lithotripsy with a mean operative time of 34.5(standard deviation 18.3)min.Retrograde stone migration did not occur.There were eight patients with hematuria postoperatively.Serious complication was 1.9% with one case of ureteral perforation.Stone clearance was 95.7% at Day 1e2 postoperatively,and 100% at Day 30 postoperatively.Conclusion:Ureteroscopic lithotripsy with intelligent pressure control using our device improved the efficiency of the lithotripsy and rate of stone clearance.The safety of the operation can be ensured.It is worth popularization and application in clinical practice.展开更多
MoS_2 samples with controllable morphologies and structures were synthesized using surfactantassisted hydrothermal processes.The effects of surfactants(PEG,PVP,P123,SDS,AOT,and CTAB)on the morphologies and structure...MoS_2 samples with controllable morphologies and structures were synthesized using surfactantassisted hydrothermal processes.The effects of surfactants(PEG,PVP,P123,SDS,AOT,and CTAB)on the morphologies and structures of MoS_2 samples were investigated.The results revealed that spherical,bulk-like,and flower-like MoS_2 particles assembled by NH4~+-intercalated MoS_2 nano-sheets were synthesized.The morphologies of the MoS_2 samples and their structures(including the slab length and the number of stacked layers) of MoS_2 nano-sheets in these samples could be controlled by adjusting the surfactants.Mono-dispersed spherical MoS_2 particles could be synthesized with PEG via the creation of MoS_2 nano-sheets with slab lengths shorter than 15 nm and fewer than six stacked layers.Possible formation mechanisms of these MoS_2 samples created via surfactant-assisted hydrothermal processes are proposed.Further,the catalytic activities of MoS_2 samples for anthracene hydrogenation were evaluated in a slurry-bed reactor.The catalyst synthesized with the surfactant PEG exhibited the highest catalytic hydrogenation activity.Compared with the other catalysts,it had a smaller particle size,mono-dispersed spherical morphology,shorter slab length,and fewer stacked layers;these were all beneficial to exposing its active edges.This work provides an efficient approach to synthesize transition metal sulfides with controllable morphologies and structures.展开更多
As a direct wide bandgap semiconductor,CsPbCl_(3)has great potential applications in the eld of near-ultraviolet photodetectors,lasers and higher-order multiphoton uores-cent detectors.In this work,we synthesized CsPb...As a direct wide bandgap semiconductor,CsPbCl_(3)has great potential applications in the eld of near-ultraviolet photodetectors,lasers and higher-order multiphoton uores-cent detectors.In this work,we synthesized CsPbCl_(3)micro/nanocrystals by vapor depo-sition method with CsCl and PbCl_(2)powders as the source materials.It was con rmed that the formation of CsPbCl_(3)perovskite through the chemical reaction of CsCl with PbCl_(2)occurred in the quartz boat before the source evaporation,not in vapor or on sub-strate surface.The evaporated CsPbCl_(3)can form micro/nanocrystals on substrate surfaces under appropriate conditions.Various morphologies including irregular polyhedrons,rods and pyramids could be observed at lower temperature,while stable and uniform CsPbCl_(3)single crystal microplatelets were controllably synthesized at 450℃.Prolonging the growth time could modulate the size and density of the microcrystals,but could not change the morphology.Substrate types made little di erence to the morphology of CsPbCl_(3)crystals.The photoluminescence spectra indicated that the crystallinity and morphology of CsPbCl_(3)micro/nanocrystals have signi cant e ects on their optical properties.The work is expected to be helpful to the development of optoelectronic devices based on individual CsPbCl_(3)microcrystal.展开更多
The differential equations of motion of a comtlaint system with parameters and variable mass, of a system with variable mass and servo constraints and those for the control problem on the forced motion of constraint s...The differential equations of motion of a comtlaint system with parameters and variable mass, of a system with variable mass and servo constraints and those for the control problem on the forced motion of constraint systems with variable mass are given respectively. Finally, an example is presented.展开更多
Synthesizing a stable and efficient photocatalyst has been the most important research goal up to now. Owing to the dominant performance of g-C3N4 (graphitized carbonitride), an ordered assemble of a composite photoca...Synthesizing a stable and efficient photocatalyst has been the most important research goal up to now. Owing to the dominant performance of g-C3N4 (graphitized carbonitride), an ordered assemble of a composite photocatalyst, Zn-Ni-P@g-C3N4, was successfully designed and controllably prepared for highly efficient photocatalytic H2 evolution. The electron transport routes were successfully adjusted and the H2 evolution was greatly improved. The maximum amount of H2 evolved reached about 531.2 μmol for 5 h over Zn-Ni-P@g-C3N4 photocatalyst with a molar ratio of Zn to Ni of 1:3 under illumination of 5 W LED white light (wavelength 420 nm). The H2 evolution rate was 54.7 times higher than that over pure g-C3N4. Moreover, no obvious reduction in the photocatalytic activity was observed even after 4 cycles of H2 production for 5 h. This synergistically increased effect was confirmed through the results of characterizations such as XRD, TEM, SEM, XPS, N2 adsorption, UV-vis DRS, transient photocurrent, FT-IR, transient fluorescence, and Mott-Schottky studies. These studies showed that the Zn-Ni-P nanoparticles modified on g-C3N4 provide more active sites and improve the efficiency of photogenerated charge separation. In addition, the possible mechanism of photocatalytic H2 production is proposed.展开更多
The ultrafine silver powders were prepared by liquid reduction method using Arabic gum as dispersant.The effects of different dispersants,pH values,and temperature on the morphology and particle size of silver powders...The ultrafine silver powders were prepared by liquid reduction method using Arabic gum as dispersant.The effects of different dispersants,pH values,and temperature on the morphology and particle size of silver powders were investigated.It is found that Arabic gum can better adsorb on silver particles via chemical adsorption,and it shows the best dispersive effect among all the selected dispersants.The particle size of silver powders can be finely tuned from 0.34 to 4.09μm by adjusting pH values,while the morphology of silver powders can be tuned by changing the temperature.The silver powders with high tap density higher than 4.0 g/cm3 were successfully prepared in a wide temperature range of 21.8-70°C.Especially,the tap density is higher than 5.0 g/cm3 when the temperature is optimized to be 50°C.The facile process and high silver concentration of this method make it a promising way to prepare high quality silver powders for electronic paste.展开更多
We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure...We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure pattern of ND3 molecules in an external electric field using the method of matrix diagonalization. We analyze how the voltages that are applied to the ring electrodes affect the depth of the efficient well and the controllability of the distance between the trap center and the surface of the chip. To obtain a better understanding, we simulate the dynamical loading and trapping processes of ND3 molecules in a |J, KM = |1,-1 state by using classical Monte–Carlo method. Our study shows that the loading efficiency of our trap can reach ~ 88%. Finally, we study the adiabatic cooling of cold molecules in our surface trap by linearly lowering the potential-well depth(i.e., lowering the trapping voltage), and find that the temperature of the trapped ND3 molecules can be adiabatically cooled from 34.5 m K to ~ 5.8 m K when the trapping voltage is reduced from-35 k V to-3 k V.展开更多
In the present work,we developed a micellar system of milk protein-surfactant(SDS)-graphene to prepare the graphene-based aerogels via hydrothermal and freeze-drying method,in which the novel surface-property of aerog...In the present work,we developed a micellar system of milk protein-surfactant(SDS)-graphene to prepare the graphene-based aerogels via hydrothermal and freeze-drying method,in which the novel surface-property of aerogels can be tuned with the decreasing of micellar size in the colloid systems resulting the improved specific surface area.The milk protein also severed as green and sustainable sources to introduce nitrogen heteroatoms into the aerogels.Subsequently,the aerogels were further graphitized and activated to fabricate N-doped porous nanocarbon at 600℃.The initial surface composition and structure of the aerogel,which was proved,has obvious impact on the final structure of the synthesized nanocarbon materials,and thus influence their electrochemical activity.The optimized nanocarbon materials(MGPC-5),with enhanced specific surface area,degree of graphitization,and nitrogen doping,exhibited excellent capacitance performance and stability in both three-electrode system(518.8 F/g at a current density of 0.1 A/g)and symmetrical electrode system(120.8 F/g at current density of 0.1 A/g and with^95%capacitance retention after 5000 cycles of charging and discharging at 3 A/g)in KOH.The assembled supercapacitor also shows ideal capacitive properties in series and parallel configurations.Tested with a stable 1.6 V windows in Li2SO4 electrolyte,the symmetric supercapacitor cell exhibits a high energy density up to 36.7 W h/kg.The present work provides a feasible fabrication method for high-performance supercapacitor based on graphene and biomass derived carbon,the proposed surfaceproperty regulation and supercapacitor performance improvement strategy may also shed light on other energy related materials or system.展开更多
基金National Natural Science Foundation of China(52004117,52174117 and 52074146)Postdoctoral Science Foundation of China(2021T140290 and 2020M680975)Basic scientific research project of Liaoning Provincial Department of Education(JYTZD2023073).
文摘With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.
基金financially supported by the National Natural Science Foundation of China(Approval No.42172168).
文摘In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations were used to study the thermal reactions of pyrene,1-methylpyrene,7,8,9,10-tetrahydrobenzopyrene,and mixtures of pyrene with 1-octene,cyclohexene,or styrene.The reactant conversion rates,reaction rates,and product distributions were calculated and compared,and the mechanisms were analyzed and discussed.The results demonstrated that methyl and naphthenic structures in aromatics might improve the conversion rates of reactants in hydrogen transfer processes,but their steric hindrances prohibited the generation of high polymers.The naphthenic structures could generate more free radicals and presented a more obvious inhibition effect on the condensation of polymers compared with the methyl side chains.It was discovered that when different olefins were mixed with pyrene,1-octene primarily underwent pyrolysis reactions,whereas cyclohexene mainly underwent hydrogen transfer reactions with pyrene and styrene,mostly producing superconjugated biradicals through condensation reactions with pyrene.In the mixture systems,the olefins scattered aromatic molecules,hindering the formation of pyrene trimers and higher polymers.According to the reactive molecular dynamics simulations,styrene may enhance the yield of dimer and enable the controlled polycondensation of pyrene.
基金Funded by National Natural Science Foundation of China (Nos.51372179, 51772224)the Open Projects Foundation of Yangtze Optical Fiber and Cable Joint Stock Limited Company (YOFC)(No.SKLD1705)。
文摘The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excellent biological affinity and stability to the SERS optical fiber probes. Au NRs were synthesized by seed growth method. The synergistic effect between AgNO_(3) and surfactant was investigated, and the highest yield was found when AgNO_(3) was 500 uL. Meanwhile, different SERS optical fiber probes were obtained by selecting silane coupling agent, polyelectrolyte multilayer and graphene oxide(GO) to treat quartz fiber. It was found that the SERS optical fiber probes obtained by the self-assembled on polyelectrolyte multilayers method performed better than those by other methods. In addition, Mapping was combined with finite element simulation to analyze the electromagnetic field distribution at the fiber end face.The electromagnetic field distribution of Au NRs was investigated, the difference of electromagnetic field intensity around the Au NRs with different arrangements was compared, the strongest signal was obtained when the Au NRs were head-to-head. Finally, sensitivity of the optimized SERS optical fiber probes could reach 10^(-9)mol/L, with excellent stability and repeatability.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12174077 and 12174051)the Science Foundation of GuangDong Province (Grant No.2021A1515012363)GuangDong Basic and Applied Basic Research Foundation (Grant No.2022A1515110011)。
文摘We investigated the electric controllable spin-filtering effect in a zigzag phosphorene nanoribbon(ZPNR) based normal–antiferromagnet–normal junction. Two ferromagnets are closely coupled to the edges of the nanoribbon and form the edge-to-edge antiferromagnetism. Under an in-plane electric field, the two degenerate edge bands of the edge-to-edge antiferromagnet split into four spin-polarized sub-bands and a 100% spin-polarized current can be easily induced with the maximal conductance 2e~2/h. The spin polarization changes with the strength of the electric field and the exchange field,and changes sign at opposite electric fields. The spin-polarized current switches from one edge to the other by reversing the direction of the electric field. The edge current can also be controlled spatially by changing the electric potential of the scattering region. The manipulation of edge current is useful in spin-transfer-torque magnetic random-access memory and provides a practical way to develop controllable spintronic devices.
基金This work was supported in part by Tsinghua University-Zhuhai Huafa Industrial Share Company Joint Institute for Architecture Optoelectronic Technologies(JIAOT KF202204)in part by STI 2030—Major Projects under Grant 2022ZD0209200+2 种基金in part by National Natural Science Foundation of China under Grant 62374099,Grant 62022047in part by Beijing Natural Science-Xiaomi Innovation Joint Fund under Grant L233009in part by the Tsinghua-Toyota JointResearch Fund,in part by the Daikin-Tsinghua Union Program,in part sponsored by CIE-Tencent Robotics XRhino-Bird Focused Research Program.
文摘Phase-change material(PCM)is widely used in thermal management due to their unique thermal behavior.However,related research in thermal rectifier is mainly focused on exploring the principles at the fundamental device level,which results in a gap to real applications.Here,we propose a controllable thermal rectification design towards building applications through the direct adhesion of composite thermal rectification material(TRM)based on PCM and reduced graphene oxide(rGO)aerogel to ordinary concrete walls(CWs).The design is evaluated in detail by combining experiments and finite element analysis.It is found that,TRM can regulate the temperature difference on both sides of the TRM/CWs system by thermal rectification.The difference in two directions reaches to 13.8 K at the heat flow of 80 W/m^(2).In addition,the larger the change of thermal conductivity before and after phase change of TRM is,the more effective it is for regulating temperature difference in two directions.The stated technology has a wide range of applications for the thermal energy control in buildings with specific temperature requirements.
基金the Natural Science Foundation of Hebei Province under Grant Number F2021201052.
文摘Electronic medical records (EMR) facilitate the sharing of medical data, but existing sharing schemes suffer fromprivacy leakage and inefficiency. This article proposes a lightweight, searchable, and controllable EMR sharingscheme, which employs a large attribute domain and a linear secret sharing structure (LSSS), the computationaloverhead of encryption and decryption reaches a lightweight constant level, and supports keyword search andpolicy hiding, which improves the high efficiency of medical data sharing. The dynamic accumulator technologyis utilized to enable data owners to flexibly authorize or revoke the access rights of data visitors to the datato achieve controllability of the data. Meanwhile, the data is re-encrypted by Intel Software Guard Extensions(SGX) technology to realize resistance to offline dictionary guessing attacks. In addition, blockchain technology isutilized to achieve credible accountability for abnormal behaviors in the sharing process. The experiments reflectthe obvious advantages of the scheme in terms of encryption and decryption computation overhead and storageoverhead, and theoretically prove the security and controllability in the sharing process, providing a feasible solutionfor the safe and efficient sharing of EMR.
基金China National Railway Group Co.,Ltd(N2020J037).
文摘The 20,000-ton combined train running has greatly promoted China’s heavy-haul railway transportation capability. The application of controllable train-tail devices could improve the braking wave of the train and braking synchronism, and alleviate longitudinal impulse.However, the characteristics of the controllable train-tail device such as exhaust area, exhaust duration and exhaust action time are not uniform in practice, and their effects on the longitudinal impulse of the train are not apparent,which is worth studying. In this work, according to the formation of the Datong-Qinhuangdao Railway, the train air brake and longitudinal dynamics simulation system(TABLDSS) is applied to establish a 20,000-ton combined train model with the controllable train-tail device, and the braking characteristics and the longitudinal impulse of the train are calculated synchronously with changing the air exhaust time, exhaust area, and action lag time under initial braking. The results show that the maximum coupler force of the combined train will decrease with the extension of the continuous exhaust time, while the total exhaust time of the controllable train-tail device remains unchanged;the maximum coupler force of the combined train reduces by32.5% with the exhaust area increasing from 70% to 140%;when the lag time between the controllable train-tail device and the master locomotive is more than 1.5 s, the maximum coupler force of the train increases along with the time difference enlargement.
基金supported by the Fund of Natural Science Foundation of China(No.11872196,12232005)supported by the Outstanding Postgraduate‘Innovation Star’Fund for Distinguished of Gansu Province(No.2021CXZX-032).
文摘Superconducting YBa_(2)Cu_(3)O_(7−x)(YBCO)bulks have promising applications in quasi-permanent magnets,levitation,etc.Recently,a new way of fabricating porous YBCO bulks,named direct-ink-writing(DIW)3D-printing method,has been reported.In this method,the customized precursor paste and programmable shape are two main advantages.Here,we have put forward a new way to customize the YBCO 3D-printing precursor paste which is doped with Al_(2)O_(3)nanoparticles to obtain YBCO with higher thermal conductivity.The great rheological properties of precursor paste after being doped with Al_(2)O_(3)nanoparticles can help the macroscopic YBCO samples with high thermal conductivity fabricated stably with high crystalline and lightweight properties.Test results show that the peak thermal conductivity of Al_(2)O_(3)-doped YBCO can reach twice as much as pure YBCO,which makes a great effort to reduce the quench propagation speed.Based on the microstructure analysis,one can find that the thermal conductivity of Al_(2)O_(3)-doped YBCO has been determined by its components and microstructures.In addition,a macroscopic theoretical model has been proposed to assess the thermal conductivity of different microstructures,whose calculated results take good agreement with the experimental results.Meanwhile,a microstructure with high thermal conductivity has been found.Finally,a macroscopic YBCO bulk with the presented high thermal conductivity microstructure has been fabricated by the Al_(2)O_(3)-doped method.Compared with YBCO fabricated by the traditional 3D-printed,the Al_(2)O_(3)-doped structural YBCO bulks present excellent heat transfer performances.Our customized design of 3D-printing precursor pastes and novel concept of structural design for enhancing the thermal conductivity of YBCO superconducting material can be widely used in other DIW 3D-printing materials.
基金sponsored by the National Key Research and Development Program of China(2021YFC2501800)the National Natural Science Foundation of China(No.U1909218)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.T2121004).
文摘Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and a suitable material for mimicking basement membrane are currently lacking.Here,we present an innovative biomimetic controllable strain membrane(BCSM)at an air–liquid interface(ALI)to reconstruct alveolar respiration.The BCSM consists of a high-precision three-dimensional printing melt-electrowritten polycaprolactone(PCL)mesh,coated with a hydrogel substrate—to simulate the important functions(such as stiffness,porosity,wettability,and ALI)of alveolar microenvironments,and seeded pulmonary epithelial cells and vascular endothelial cells on either side,respectively.Inspired by papercutting,the BCSM was fabricated in the plane while it operated in three dimensions.A series of the topological structure of the BCSM was designed to control various local-area strain,mimicking alveolar varied deformation.Lopinavir/ritonavir could reduce Lamin A expression under over-stretch condition,which might be effective in preventing ventilator-induced lung injury.The biomimetic lung-unit model with BCSM has broader application prospects in alveoli-related research in the future,such as in drug toxicology and metabolism.
基金supported by National Natural Science Foundation of China (No.11974301)Key Research and Development Program of Hunan Province (No.2022GK2007)+2 种基金Key Project from Department Education of Hunan Province (No.22A0123)Scientific Research Fund of Hunan Provincial Education Department (No.21B0136)National college students innovation and entrepreneurship training program (No.S202310530016)。
文摘Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform PdS and PdS_(2)nanofilms(NFs)remains an enormous challenge.In this work,2-inch wafer-scale PdS and PdS_(2) NFs with excellent stability can be controllably prepared via chemical vapor deposition combined with electron beam evaporation technique.The thickness of the pre-deposited Pd film and the sulfurization temperature are critical for the precise synthesis of PdS and PdS_(2) NFs.A corresponding growth mechanism has been proposed based on our experimental results and Gibbs free energy calculations.The electrical transport properties of PdS and PdS_(2) NFs were explored by conductive atomic force microscopy.Our findings have achieved the controllable growth of PdS and PdS_(2) NFs,which may provide a pathway to facilitate PdS and PdS_(2) based applications for next-generation high performance optoelectronic devices.
基金the financial support from the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021007)the National Nature Science Foundation of China(21903082 and 22273100)+2 种基金the Dalian Institute of Chemical Physics(DICP I202036,and I202218)the DNL Cooperation Fund,CAS(DNL202012)Liaoning Provincial Natural Science Foundation of China under grant 2022-MS-020。
文摘Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent heat spontaneously as the temperature below the phase transition temperature,rendering thermal energy storage and release uncontrollable,thus hindering their practical application in time and space.Herein,we developed erythritol/sodium carboxymethylcellulose/tetrasodium ethylenediaminetetraacetate(ERY/CMC/EDTA-4Na)composite PCMs with novel spatiotemporal thermal energy storage properties,defined as spatiotemporal PCMs(STPCMs),which exhibit the capacity of thermal energy long-term storage and controllable release.Our results show that the composite PCMs are unable to lose latent heat due to spontaneous crystallization during cooling,but can controllably release thermal energy through cold crystallization during reheating.The cold-crystallization temperature and enthalpy of composite PCMs can be adjusted by proportional addition of EDTA-4Na to the composite.When the mass fractions of CMC and EDTA-4Na are both 10%,the composite PCMs can exhibit the optical coldcrystallization temperature of 51.7℃ and enthalpy of 178.1 J/g.The supercooled composite PCMs without latent heat release can be maintained at room temperature(10-25℃)for up to more than two months,and subsequently the stored latent heat can be controllably released by means of thermal triggering or heterogeneous nucleation.Our findings provide novel insights into the design and construction of new PCMs with spatiotemporal performance of thermal energy long-term storage and controllable release,and consequently open a new door for the development of advanced solar thermal utilization techniques on the basis of STPCMs.
基金Project supported by the Hunan Provincial Natural Science Foundation of China(Grant No.2021JJ30738)Scientific Research Fund of Hunan Provincial Education Department(Grant No.19K001)Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering’s Open Fund Project-2020(Grant No.202016)。
文摘A novel 4H-Si C trench insulated gate bipolar transistor(IGBT)with a controllable hole-extracting(CHE)path is proposed and investigated in this paper.The CHE path is controlled by metal semiconductor gate(MES gate)and metal oxide semiconductor gate(MOS gate)in the p-shield region.The grounded p-shield region can significantly suppress the high electric field around gate oxide in Si C devices,but it weakens the conductivity modulation in the Si C trench IGBT by rapidly sweeping out holes.This effect can be eliminated by introducing the CHE path.The CHE path is pinched off by the high gate bias voltage at on-state to maintain high conductivity modulation and obtain a comparatively low on-state voltage(VON).During the turn-off transient,the CHE path is formed,which contributes to a decreased turn-off loss(EOFF).Based on numerical simulation,the EOFFof the proposed IGBT is reduced by 89%compared with the conventional IGBT at the same VONand the VONof the proposed IGBT is reduced by 50%compared to the grounded p-shield IGBT at the same EOFF.In addition,the average power reduction for the proposed device can be 51.0%to 81.7%and 58.2%to 72.1%with its counterparts at a wide frequency range of 500 Hz to 10 k Hz,revealing a great improvement of frequency characteristics.
基金This study was funded by Major Science and Technology Projects of Jiangxi Provincial Science and Technology Department(20152ACG70009).
文摘Objective:The purpose of the study was to assess the clinical efficacy and safety of a combined perfusion suction platform with pressure feedback control function and an ureteroscopic suction sheath that can measure the ureteropelvic pressure in implementing lithotripsies.Methods:Fifty-two patients who underwent lithotripsy under intelligent monitoring of ureteral intraluminal pressure from June 2016 to January 2018 were retrospectively recruited.The inclusion standard was stone diameter>1.5 cm but<2.5 cm.After the 12/14 Fr suction sheath was placed,manometer interface and suction interface of the sheath were connected to the platform via the pressure sensor and suction tube,respectively.The ureteroscope was connected to the platform perfusion pump,and the crushed stones were aspirated out under negative pressure.Results:According to the location of the stone,21(40.4%)cases were classified as upper ureteral stones,19(36.5%)were midureteral stones,and 12(23.1%)were lower ureteral stones.Forty-seven patients underwent successful primary sheath placement and lithotripsy with a mean operative time of 34.5(standard deviation 18.3)min.Retrograde stone migration did not occur.There were eight patients with hematuria postoperatively.Serious complication was 1.9% with one case of ureteral perforation.Stone clearance was 95.7% at Day 1e2 postoperatively,and 100% at Day 30 postoperatively.Conclusion:Ureteroscopic lithotripsy with intelligent pressure control using our device improved the efficiency of the lithotripsy and rate of stone clearance.The safety of the operation can be ensured.It is worth popularization and application in clinical practice.
基金supported by the National Natural Science Foundation of China(21303186)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA07020300)~~
文摘MoS_2 samples with controllable morphologies and structures were synthesized using surfactantassisted hydrothermal processes.The effects of surfactants(PEG,PVP,P123,SDS,AOT,and CTAB)on the morphologies and structures of MoS_2 samples were investigated.The results revealed that spherical,bulk-like,and flower-like MoS_2 particles assembled by NH4~+-intercalated MoS_2 nano-sheets were synthesized.The morphologies of the MoS_2 samples and their structures(including the slab length and the number of stacked layers) of MoS_2 nano-sheets in these samples could be controlled by adjusting the surfactants.Mono-dispersed spherical MoS_2 particles could be synthesized with PEG via the creation of MoS_2 nano-sheets with slab lengths shorter than 15 nm and fewer than six stacked layers.Possible formation mechanisms of these MoS_2 samples created via surfactant-assisted hydrothermal processes are proposed.Further,the catalytic activities of MoS_2 samples for anthracene hydrogenation were evaluated in a slurry-bed reactor.The catalyst synthesized with the surfactant PEG exhibited the highest catalytic hydrogenation activity.Compared with the other catalysts,it had a smaller particle size,mono-dispersed spherical morphology,shorter slab length,and fewer stacked layers;these were all beneficial to exposing its active edges.This work provides an efficient approach to synthesize transition metal sulfides with controllable morphologies and structures.
基金supported by the National Natu-ral Science Foundation of China(No.11575187)the National Key Research and Development Program(No.2016YFB0700205).
文摘As a direct wide bandgap semiconductor,CsPbCl_(3)has great potential applications in the eld of near-ultraviolet photodetectors,lasers and higher-order multiphoton uores-cent detectors.In this work,we synthesized CsPbCl_(3)micro/nanocrystals by vapor depo-sition method with CsCl and PbCl_(2)powders as the source materials.It was con rmed that the formation of CsPbCl_(3)perovskite through the chemical reaction of CsCl with PbCl_(2)occurred in the quartz boat before the source evaporation,not in vapor or on sub-strate surface.The evaporated CsPbCl_(3)can form micro/nanocrystals on substrate surfaces under appropriate conditions.Various morphologies including irregular polyhedrons,rods and pyramids could be observed at lower temperature,while stable and uniform CsPbCl_(3)single crystal microplatelets were controllably synthesized at 450℃.Prolonging the growth time could modulate the size and density of the microcrystals,but could not change the morphology.Substrate types made little di erence to the morphology of CsPbCl_(3)crystals.The photoluminescence spectra indicated that the crystallinity and morphology of CsPbCl_(3)micro/nanocrystals have signi cant e ects on their optical properties.The work is expected to be helpful to the development of optoelectronic devices based on individual CsPbCl_(3)microcrystal.
文摘The differential equations of motion of a comtlaint system with parameters and variable mass, of a system with variable mass and servo constraints and those for the control problem on the forced motion of constraint systems with variable mass are given respectively. Finally, an example is presented.
基金supported by the National Natural Science Foundation of China(21862002,41663012)the Innovation Team Project of North Minzu University(YCX18082)the Scientific Research Project of North Minzu University(2016 HG-KY 06)~~
文摘Synthesizing a stable and efficient photocatalyst has been the most important research goal up to now. Owing to the dominant performance of g-C3N4 (graphitized carbonitride), an ordered assemble of a composite photocatalyst, Zn-Ni-P@g-C3N4, was successfully designed and controllably prepared for highly efficient photocatalytic H2 evolution. The electron transport routes were successfully adjusted and the H2 evolution was greatly improved. The maximum amount of H2 evolved reached about 531.2 μmol for 5 h over Zn-Ni-P@g-C3N4 photocatalyst with a molar ratio of Zn to Ni of 1:3 under illumination of 5 W LED white light (wavelength 420 nm). The H2 evolution rate was 54.7 times higher than that over pure g-C3N4. Moreover, no obvious reduction in the photocatalytic activity was observed even after 4 cycles of H2 production for 5 h. This synergistically increased effect was confirmed through the results of characterizations such as XRD, TEM, SEM, XPS, N2 adsorption, UV-vis DRS, transient photocurrent, FT-IR, transient fluorescence, and Mott-Schottky studies. These studies showed that the Zn-Ni-P nanoparticles modified on g-C3N4 provide more active sites and improve the efficiency of photogenerated charge separation. In addition, the possible mechanism of photocatalytic H2 production is proposed.
基金Project(2014DFA90520)supported by the International Cooperation Program of Ministry of Science and Technology of ChinaProject(2013A090100003)supported by the Production,Teaching and Research Program of Guangdong Province,ChinaProject(2013DY048)supported by the Science and Technology Cooperation Program of Daye Nonferrous Metals Group,China
文摘The ultrafine silver powders were prepared by liquid reduction method using Arabic gum as dispersant.The effects of different dispersants,pH values,and temperature on the morphology and particle size of silver powders were investigated.It is found that Arabic gum can better adsorb on silver particles via chemical adsorption,and it shows the best dispersive effect among all the selected dispersants.The particle size of silver powders can be finely tuned from 0.34 to 4.09μm by adjusting pH values,while the morphology of silver powders can be tuned by changing the temperature.The silver powders with high tap density higher than 4.0 g/cm3 were successfully prepared in a wide temperature range of 21.8-70°C.Especially,the tap density is higher than 5.0 g/cm3 when the temperature is optimized to be 50°C.The facile process and high silver concentration of this method make it a promising way to prepare high quality silver powders for electronic paste.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10674047,10804031,10904037,10904060,10974055,11034002,and61205198)the National Key Basic Research and Development Program of China(Grant Nos.2006CB921604 and 2011CB921602)+2 种基金the Basic Key Program of Shanghai Municipality,China(Grant No.07JC14017)the Fundamental Research Funds for the Central Universitiesthe Shanghai Leading Academic Discipline Project,China(Grant No.B408)
文摘We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure pattern of ND3 molecules in an external electric field using the method of matrix diagonalization. We analyze how the voltages that are applied to the ring electrodes affect the depth of the efficient well and the controllability of the distance between the trap center and the surface of the chip. To obtain a better understanding, we simulate the dynamical loading and trapping processes of ND3 molecules in a |J, KM = |1,-1 state by using classical Monte–Carlo method. Our study shows that the loading efficiency of our trap can reach ~ 88%. Finally, we study the adiabatic cooling of cold molecules in our surface trap by linearly lowering the potential-well depth(i.e., lowering the trapping voltage), and find that the temperature of the trapped ND3 molecules can be adiabatically cooled from 34.5 m K to ~ 5.8 m K when the trapping voltage is reduced from-35 k V to-3 k V.
基金financial support from the NSFC of China(21761132010,91645114 and 21573256)the Youth Innovation Promotion Association,CAS,China。
文摘In the present work,we developed a micellar system of milk protein-surfactant(SDS)-graphene to prepare the graphene-based aerogels via hydrothermal and freeze-drying method,in which the novel surface-property of aerogels can be tuned with the decreasing of micellar size in the colloid systems resulting the improved specific surface area.The milk protein also severed as green and sustainable sources to introduce nitrogen heteroatoms into the aerogels.Subsequently,the aerogels were further graphitized and activated to fabricate N-doped porous nanocarbon at 600℃.The initial surface composition and structure of the aerogel,which was proved,has obvious impact on the final structure of the synthesized nanocarbon materials,and thus influence their electrochemical activity.The optimized nanocarbon materials(MGPC-5),with enhanced specific surface area,degree of graphitization,and nitrogen doping,exhibited excellent capacitance performance and stability in both three-electrode system(518.8 F/g at a current density of 0.1 A/g)and symmetrical electrode system(120.8 F/g at current density of 0.1 A/g and with^95%capacitance retention after 5000 cycles of charging and discharging at 3 A/g)in KOH.The assembled supercapacitor also shows ideal capacitive properties in series and parallel configurations.Tested with a stable 1.6 V windows in Li2SO4 electrolyte,the symmetric supercapacitor cell exhibits a high energy density up to 36.7 W h/kg.The present work provides a feasible fabrication method for high-performance supercapacitor based on graphene and biomass derived carbon,the proposed surfaceproperty regulation and supercapacitor performance improvement strategy may also shed light on other energy related materials or system.