One-time application of mixed fertilizer formed by the compounding of two controlled-release nitrogen fertilizers(CRUs)with targeted N supply during the periods from transplantation(TS)to panicle initiation(PI)and fro...One-time application of mixed fertilizer formed by the compounding of two controlled-release nitrogen fertilizers(CRUs)with targeted N supply during the periods from transplantation(TS)to panicle initiation(PI)and from PI to heading(HS)is expected to synchronize the double-peak N demand of rice.However,its effects on the yield and N use efficiency(NUE)of labor-intensive double-cropping rice were unknown.Two targeted CRU(CRU_(A)and CRU_(B))were compounded in five ratios(CRU_(A):CRU_(B)=10:0,7:3,5:5,3:7,and 0:10)to form five mixed fertilizers(BBFs):BBF1-5.A field experiment was performed to investigate the characteristics of N supply in early and late seasons under different BBFs and their effects on N uptake,yield,and ammonia volatilization(AV)loss from paddy fields of double-cropping rice.Conventional high-yield fertilization(CK,three split applications of urea)and zero-N treatments were established as controls.The N supply dropped significantly with the increased compound ratio of CRU_(B)during the period from TS to PI,but increased during the period from PI to HS.With the exception of the period from TS to PI in the late rice season,the N uptake of early and late rice maintained close synchronicity with the N supply of BBFs during the double-peak periods.Excessive N supply(BBF1 and BBF2)in the late rice season during the period from TS to PI increased N loss by AV.The effect of BBF on grain yield increase varied widely between seasons,irrespective of year.Among the BBFs,the BBF2 treatment of early rice not only stabilized the spikelets per panicle but also ensured a high number of effective panicles by promoting N uptake during the period from TS to PI and a high grain-filling percentage by appropriately reducing the N supply at the later PI stage,resulting in the highest rice yield.While stabilizing the effective panicle number,the BBF4 treatment of late rice increased the number of spikelets per panicle by promoting N uptake during the period from PI to HS,resulting in the highest rice yield.The two-year average yield and apparent N recovery efficiency of the BBF2 treatment during the early rice season were 9.6 t ha 1 and 45.3%,while those of late rice in BBF4 were 9.6 t ha 1 and 43.0%,respectively.The yield and NUE indexes of BBF2 in early rice and BBF4 in late rice showed no significant difference from those of CK.The AVs of BBF2 during the early rice season and of BBF4 during the late rice season were 50.0%and 76.8%lower,respectively,than those of CK.BBF2 and BBF4 could effectively replace conventional urea split fertilization in early and late rice seasons,ensuring rice yield and NUE and reducing AV loss in paddy fields.展开更多
To explore the effect of fertilizers on the yield and quality of Platostoma palustre,in this study,P.palustre was utilized as the research material,and field experiments were conducted with different application rates...To explore the effect of fertilizers on the yield and quality of Platostoma palustre,in this study,P.palustre was utilized as the research material,and field experiments were conducted with different application rates of compound fertilizer and organic fertilizer and non-targeted metabolomics analysis was further employed to compare and analyze the differences in the metabolic components between the compound fertilizer and organic fertilizer treatments.The results of field experiments demonstrated that both compound and organic fertilizers could promote the fresh weight,shade dry weight,and dry weight of P.palustre,with 450 kg hm−2 compound fertilizer and 4500 kg hm−2 organic fertilizer presenting the optimum effects.Non-targeted metabolomics revealed that 1096 metabolites were identified in 450 kg hm−2 compound fertilizer and 4500 kg hm−2 organic fertilizer,and 885 metabolites were annotated in the Human Metabolome Database(HMDB).There were 318 differential metabolites(DMs)found between the two treatments,and 263 metabolites were annotated in HMDB.The abundance of 2 phenolic compounds and 12 organic oxygen compounds in the treatment of 4500 kg hm−2 organic fertilizer was significantly higher than that of the 450 kg hm−2 compound fertilizer,while the abundance of 21 organic oxygen compounds,14 flavonoids,3 phenolic compounds,and 5 cinnamic acids and their derivatives was significantly up-regulated in 450 kg hm−2 compound fertilizer treatment.In addition,5 metabolic pathways were significantly enriched,and the flavone and flavonol biosynthesis was the most significantly differential metabolic pathway.These results suggested that the application of both compound fertilizers and organic fertilizers can increase the yield of P.palustre,but their effects on metabolites were different.This study has considerable implications for the planting and cultivation of P.palustre,furnishing a scientific foundation for an efficient and rational application of fertilizer.展开更多
This paper was to explore the mechanism of single basal application of controlled-release fertilizers for increasing yield of rice (Oryza sativa L.). Pot trials and cylinder trials were carried out from 2002 to 2005...This paper was to explore the mechanism of single basal application of controlled-release fertilizers for increasing yield of rice (Oryza sativa L.). Pot trials and cylinder trials were carried out from 2002 to 2005 to study the influences of single basal application of 3 controlled-release fertilizers on the changes of soil available N, root development, senescence and lodging resistance at late growth stages. Results showed that at 30 days after fertilization, single basal application of controlled-release fertilizers coated with vegetal-substance (CRF1) and polymer materials (CRF3) increased soil available N to 12.0 and 147.9%, respectively, in comparison to split fertilization of rice-specific fertilizer (RSF1). Treatments of the two CRFs obviously benefited the development of root system, resulting in greater rice root weights with extensive distribution and higher root activity. In addition, the two CRF treatments, in comparison to RSF1, enhanced chlorophyll consents of the flag leaves to 9.5 and 15.5%, and soluble protein up to 89.7 and 108.0% respectively. Application of the two CRFs also made the base of rice stems strong and large, declined the proportion of shoot and root, increased root depth index. Though relatively low K rate, single basal application of the CRF3 coated with NH4MgPO4 could also promote the development of root system, enhance root activity and some physiological functions of flag leaves. Based on these results, it was concluded that major mechanisms for increasing rice yield by single basal application of the CRFs should be attributed to grater soil available N supply, superior development of root systems, better nutrient absorption capacity, slower senescence and enhancement of lodging resistance at late stages.展开更多
This experiment explored the effects of single application of seven types of slow-and controlled-release fertilizers on rice yield and various population characteristics.Based on a study of the nitrogen(N)release char...This experiment explored the effects of single application of seven types of slow-and controlled-release fertilizers on rice yield and various population characteristics.Based on a study of the nitrogen(N)release characteristics of these fertilizers,pot experiments were conducted in 2018 and 2019 with split fertilization(CK,urea applied split equally at basal and panicle initiation stages,respectively)as control,which assessed the effects on SPAD value,yield and yield components,dynamic changes of rice tillers and dry matter accumulation.The results showed that the N release characteristics of different types of slow-and controlled-release fertilizers were significantly different.Polymer-coated urea(PCU)showed a controlledrelease mode and provided sustained release throughout the whole growth stages.Sulfur-coated urea(SCU)exhibited a slow-release mode,providing insufficient release at the middle and late stages.Urease inhibitor urea(AHA)and ureaformaldehyde(UF)yielded a rapid-release mode,with an explosive N release at the early stage and no release at the middle and late stages.These results showed that PCU delayed the peak seedling stage.Compared with CK,dry matter accumulation and SPAD showed no significant differences,and due to the continuous release of N throughout the growth stages,rice yield,spikelets per panicle,seed setting rate,and 1000-grain weight were all increased.Owing to the lack of N supply at the late stage and the low number of spikelets,SCU led to a reduction of rice yield,which is nevertheless not statistically significant.AHA and UF were susceptible to environmental factors and had varying effects on rice yield.The results of this experiment indicated that given a fixed amount of N applied in a pot,the stronger the N supply capacity and the longer the effective duration time of the fertilizer,the higher the dry matter accumulation at the late growth stage,and the higher the rice yield.展开更多
Encapsulation of water-soluble nitrogen fertilizers by membranes can be used to control the release of nutrients to maximize the fertilization ef fect and reduce environmental pollution.In this research,we formulated ...Encapsulation of water-soluble nitrogen fertilizers by membranes can be used to control the release of nutrients to maximize the fertilization ef fect and reduce environmental pollution.In this research,we formulated a new double-coated controlled-release fertilizer(CRF)by using food-grade microcrystalline wax(MW)and marine polysaccharide derivatives(calcium alginate and chitosan-glutaraldehyde copolymer).The pellets of water-soluble nitrogen fertilizer were coated with the marine polysaccharide derivatives and MW.A convenient and eco-friendly method was used to prepare the CRF.Scanning electron microscopy(SEM)and Fourier transform infrared spectroscopy(FTIR)were used to characterize the morphology and composition of the products.The nitrogen-release properties were determined in water using UV-Vis spectrophotometry.The controlled-release properties of the fertilizer were improved dramatically after coating with MW and the marine polysaccharide derivatives.The results show that the double-coated CRFs can release nitrogen in a controlled manner,have excellent controlled-release features,and meet the European Standard for CRFs.展开更多
Effects of controlled-release fertilizers (CRFs) (C-AS, polyolefin coated ammonium sulfate, 50-day-type; Dd-LP, polyolefincoated urea with dicyandiamide, 40-day-type; C-ANP, polyolefin coated ammonium nitrate phosphat...Effects of controlled-release fertilizers (CRFs) (C-AS, polyolefin coated ammonium sulfate, 50-day-type; Dd-LP, polyolefincoated urea with dicyandiamide, 40-day-type; C-ANP, polyolefin coated ammonium nitrate phosphate, 40-day-type; andC-DAP, polyolefin coated diammonium acid phosphate, 40-day-type), ammonium sulphate and no fertilizer control, andtheir application methods (spot, band, surface and mixed) on germination and seedling development of sweet corn (Zeamays L.var. saccharata Sturt.) and dent corn (Zea mays L.var. indentata Sturt.) were investigated in a greenhouse. Underco-situs application (band and spot) of CRFs, there were no obvious differences in the germination speed and rate for bothdent corn and sweet corn relative to control. Mortality rates of sweet corn seedlings under co-situs application were highin experiment 1, but were very low in experiment 2, because the environmental conditions were different in the twoexperiments. That is, under lower temperature and weaker sunlight, young seedlings easily die due to high soil nutrientconcentration and slow growth speed of corn. Shoot weight of both dent and sweet corn did not greatly decrease inexperiment 1. In experiment 2, there were no significant differences in shoot and root weight of both corns between co-situs and surface or mixed application methods. However, with spot and band application of ammonium sulfate, shoot androot weight were significantly reduced. Soil EC and pH were considerably affected by co-situs application, especially atthe fertilizer application site. For both dent and sweet corn, EC in the 0-3 cm soil was significantly higher under co-situsapplication and surface application than that under mixed application, whereas in the 3-6 cm soil depth the situation wasreversed. Compared with control, mixed application of CRFs decreased soil pH slightly (0-3 cm depth) or greatly (3-6 cmdepth).展开更多
Controlled-release urea(CRU)is widely reported to supply crop nitrogen(N)demand with one basal application,thus effectively replacing split applications of urea without diminishing grain yield and N use efficiency(NUE...Controlled-release urea(CRU)is widely reported to supply crop nitrogen(N)demand with one basal application,thus effectively replacing split applications of urea without diminishing grain yield and N use efficiency(NUE).However,its use for replacement for high-yield split applications of urea(CK)for rice is untested.In addition,the degree to which greenhouse gas(GHG)emissions in rice systems are affected when CRU is substituted for CK remains unclear.During 2017 and 2018,we sampled plant growth and gas emissions in a rice paddy field treated with three CRU types(sulfur-coated urea[SCU],polymer-coated urea[PCU],and bulk blended CRU[BBU])applied via two methods(surface broadcasting on the soil and subsurface banding at 5 cm depth),with CK as a control.The three CRUs led to different soil NH_(4)^(+)-N dynamics,and the N supply pattern under BBU was more beneficial for rice seedling establishment than under SCU and PCU,resulting in grain yield and NUE comparable to those under CK.CRU type showed no significant effect on either CH_(4) emissions or N_(2)O emissions,and broadcast CRUs exhibited significantly higher total GHG emissions than CK.However,banded CRUs significantly reduced the total GHG emissions in comparison with broadcast CRUs,by 9.2%averaged across the two years.Reduced CH_(4) emissions,particularly during the period prior to the middle drainage,contributed largely to the GHG difference.With comparably high grain yield and low total GHG emissions,banded BBU showed a low yield-scaled GHG(GHG emissions divided by grain yield)comparable to that under CK in both years.Overall,our study suggested that N management synchronized with rice demand and contributing to a high NUE tended to minimize yield-scaled GHG.Broadcast CRU can hardly substitute for CK in terms of either grain yield or GHG emissions,but banded BBU is a promising N management strategy for sustaining rice production while minimizing environmental impacts.展开更多
Fertilizers contribute greatly to high yields but also result in environmental non-point contamination, including the emission of greenhouse gas(N 2O) and eutrophication of water bodies. How to solve this problem has...Fertilizers contribute greatly to high yields but also result in environmental non-point contamination, including the emission of greenhouse gas(N 2O) and eutrophication of water bodies. How to solve this problem has become a serious challenge, especially for China as its high ecological pressure. Controlled-release fertilizer(CRF) has been developed to minimize the contamination while keeping high yield and has become a green fertilizer for agriculture. Several CRFs made with special coating technology were used for testing the fertilizer effects in yield and environment through pot experiment and field trial. The result indicated that the CRFs had higher N use efficiency, thus reducing N loss through leaching and volatilization while keeping higher yields. Comparing with imported standard CRFs, the test on CRFs showed similar fertilizer effect but with much lower cost. CRFs application is becoming a new approach for minimizing non-point contamination in agriculture.展开更多
Coated controlled-release fertilizers (CRFs) have been widely applied in agriculture due to their increased efficiency. However, the widespread and a lot of coated CRFs application may leave undesired coating residu...Coated controlled-release fertilizers (CRFs) have been widely applied in agriculture due to their increased efficiency. However, the widespread and a lot of coated CRFs application may leave undesired coating residues in the soil due to their slow degradation. Limited information is available on the effects of substantial residual coatings on the soil bacterial community. By adding 0, 5, 10, 20, and 50 times quantities of residual coating from conventional application amount of resin and water-soluble coated CRFs, we studied the responses of soil properties and bacterial community composition to these two residual coatings in black soil. The results showed that the resin and water-soluble coatings did not essentially alter the properties of black soil or cause dramatic changes to bacterial diversity within the test concentration range. The residual resin and water-soluble coatings also did not distinctly alter the relative abundance of the top ten bacteria at phylum level. Heatmap results suggested that the treatments were basically clustered into two groups by concentration rather than types of coating material. Pearson correlation analysis showed that the Simpson's diversity index of the bacterial community was significantly correlated with microbial biomass carbon (MBC, r=0.394, P〈0.05), and the richness index abundance-based coverage estimator (ACE) of the bacterial community was significantly correlated with microbial biomass nitrogen (MBN, t=0.407, P〈0.05). Overall, results of this study suggested that substantial residual resin and water-soluble coatings with 0-50 times quantities of residual coating from conventional application amount of coated CRFs did not generate obviously negative impacts on the bacterial community in black soil.展开更多
The physiological mechanism of photosynthetic function and senescence of rice leaves was studied by using early rice variety Baliangyou 100 and late rice variety Weiyou 46, treated with controlled-release nitrogen fer...The physiological mechanism of photosynthetic function and senescence of rice leaves was studied by using early rice variety Baliangyou 100 and late rice variety Weiyou 46, treated with controlled-release nitrogen fertilizer (CRNF), urea and no nitrogen fertilizer. CRNF showed obvious effects on delaying the senescence and prolonging photosynthetic function duration of rice leaves. Compared with urea, CRNF could significantly increase the chlorophyll content of functional leaves in both early and late rice varieties, and this difference between the treatments became larger as rice growth progressed; CRNF increased the activities of active oxygen scavenging enzymes super oxide dismutase (SOD) and peroxidase (POD), and decreased the accumulation amount of malondialdehyde (MDA) in functional leaves during leaf aging; Photosynthetic rate of functional leaves in CRNF treatment was significantly higher than that in urea treatment. The result also indicated that CRNF could effectively regulate the contents of indole-3-acetic acid (IAA) and abscisic acid (ABA) in functional leaves; IAA content was higher and ABA content was lower in CRNF treatment than those in urea treatment. Therefore, application of CRNF could increase the rice yield significantly due to these physiological changes in the functional leaves.展开更多
Experiments were carried out with citrus (Citrus reticulate) and tea (Podocarpus fleuryi Hickel.) to study the effects of compound fertilizers on their yields and quality. In the citrus experiment, application of comp...Experiments were carried out with citrus (Citrus reticulate) and tea (Podocarpus fleuryi Hickel.) to study the effects of compound fertilizers on their yields and quality. In the citrus experiment, application of compound fertilizers increased available P, K and Mg contents in soil but decreased alkali-hydrolyzable N contents in soil and N, P and K contents in leaves. In the tea ex- periment, application of compound fertilizers increased available P, K and Mg contents in soil and N, P, K and Mg contents in leaves but decreased alkali-hydrolyzable N in soil compared with the urea treatment. Application of compound fertilizers could improve the quality of citrus and tea, increase their yields and enhance their economical profits significantly. Compared with the control, application of compound fertilizers increased citrus yields by 6.31, 12.94 and 17.69 t/ha, and those of tea by 0.51, 0.86 and 1.30 t/ha, respectively. Correspondingly, profits were increased by 21.4% to 61.1% for citrus and by 10.0% to 15.7% for tea. Optimal rates of compound fertilizers were recommended for both crops.展开更多
[Objectives]The paper was to investigate the effects of different application rates of pesticides and fertilizers on wheat stripe rust and wheat yield.[Methods]Two-factor split block design was adopted.[Results]Differ...[Objectives]The paper was to investigate the effects of different application rates of pesticides and fertilizers on wheat stripe rust and wheat yield.[Methods]Two-factor split block design was adopted.[Results]Different application rates of pesticides and chemical fertilizers would affect the incidence of wheat stripe rust,and further affect the yield of wheat.Triadimefon had no significant effect on wheat yield,and potassium sulfate compound fertilizer had significant effect on wheat yield,while their interaction had no significant effect on wheat yield.There were significant differences in wheat yield among the 15 treatment combinations,which may be due to the fact that the application rate of potassium sulfate compound fertilizer had extremely significant effect on wheat yield.[Conclusions]Under the wheat/green manure/maize zonal rotation system in Bijie,the sowing width of wheat is guaranteed to be 0.5 m under the 1.65 m zonal cropping system,and the sowing rate of wheat is arranged according to the basic seedling of 1.2 million plants/hm^(2).In the early stage of wheat stripe rust,15%triadimefon WP can be sprayed evenly at the dose of 1050 g/hm^(2)by a high-power sprayer in a sunny day.展开更多
[Objectives] This study was conducted to screen compound fertilizers suitable for ginger( Zingiber officinale Roscoe). [Methods]The effects of several different compound fertilizers on the growth,development,yield,and...[Objectives] This study was conducted to screen compound fertilizers suitable for ginger( Zingiber officinale Roscoe). [Methods]The effects of several different compound fertilizers on the growth,development,yield,and quality of ginger were compared under field test conditions. [Results] Treatment T2( 17-9-19) could effectively promote the growth and development of ginger plants and increase the yield of ginger. The content of soluble sugars in ginger was the highest in T2;the content of vitamin C in ginger was the highest in treatment T1( 15-15-15);treatment T2 showed the highest content of free amino acids in ginger;the content of proteins in ginger treated by T3( 22-8-10) was the highest;T3 also showed the highest content of gingerol;and treatment T2 had the lowest nitrate content. Comprehensive from the growth,yield and quality effect of ginger plants,treatment T2 was the best. [Conclusions]This study provides scientific basis for the rational fertilization and high-yield and efficient cultivation of ginger.展开更多
In order to study the effects of organic compound fertilizers on soil water infiltration characteristics,an indoor one-dimensional soil column water infiltration test was carried out.Six soil sample treatment groups w...In order to study the effects of organic compound fertilizers on soil water infiltration characteristics,an indoor one-dimensional soil column water infiltration test was carried out.Six soil sample treatment groups were set,namely marshy solonchak(control check,CK for short),bamboo charcoal-mixed marshy solonchak,Difuyuan-mixed marshy solonchak,salined flavo-aquic soil(CK),bamboo charcoal-mixed salined flavo-aquic soil and Difuyuan-mixed salined flavo-aquic soil.After 120 min of infiltration,compared with the CK groups of marshy solonchak and salined flavo-aquic soil,the cumulative infiltration volumes of the bamboo charcoal and difuyuan treatment groups increased by -18.78%,-3.93% and 25.77%,6.53%,respectively;and the displacement increased by -18.93%,1.64% and 22.6%,12.5%,respectively.The relationship between the wetting front displacement and time conformed to a linear function.The effects of organic compound fertilizers on the initial infiltration rates of marshy solonchak and salined flavo-aquic soil were significant,and the relationship between infiltration rate and time conformed to a power function.The vertical distribution of soil moisture under the application of organic compound fertilizers showed that the moisture content changed relatively small within 5 cm of the surface soil layer,then decreased slowly within 5-10 cm of the soil layer,and decreased drastically below 10 cm of soil layer;and relative to the CK group,the application of organic compound fertilizers was beneficial to increase the moisture content of salined flavo-aquic soil.The organic compound fertilizers reduced the water infiltration capacity of marshy solonchak and improved the water infiltration capacity of salined flavo-aquic soil.Compared with Difuyuan,bamboo charcoal reduced the water infiltration capacity of marshy solonchak better and improved the water permeability of salined flavo-aquic soil more significantly.展开更多
[Objective] The aim was to explore effects of FCMP compound fertilizer on growth, development and yield of early rice. [Method] Based on lower-graded phos- phate resource, effects of FCMP compound fertilizers on yield...[Objective] The aim was to explore effects of FCMP compound fertilizer on growth, development and yield of early rice. [Method] Based on lower-graded phos- phate resource, effects of FCMP compound fertilizers on yield and growth of early rice in a field were researched. [Result] FCMP compound fertilizers 0, 1 and 2 en- hanced rice yield, increasing by 21.86%, 20.25% and 13.46%, compared with the rice applied with conventional fertilizer; number of productive ears and grain number per ear in unit area were improved by FCMP compound fertilizer, for example, the two factors achieved the highest with FCMP compound fertilizer 1, increasing by 11.70% and 19.63%. Furthermore, FCMP compound fertilizer promoted plant height and tiller number, maintained high photosynthetic efficiency, enhanced lodging-resis- tance and guaranteed stable and high yield. [Conclusion] The research is of theoret- ical and practical significance for further exploration of production techniques and application of FCMP compound fertilizer.展开更多
Heavy use of conventional fertilizers can lead to negative environmental concerns.Controlled-release fertilizers(CRFs)can effectively reduce the amounts of fertilizers used,improve the availability of fer-tilizers,and...Heavy use of conventional fertilizers can lead to negative environmental concerns.Controlled-release fertilizers(CRFs)can effectively reduce the amounts of fertilizers used,improve the availability of fer-tilizers,and which is conducive to the protection of the ecological environment and sustainable devel-opment of agriculture.Therefore,it is imperative to develop and use CRFs as an alternative to traditional fertilizers.This review aims to present the classification,raw material composition,benefits,release process,release mode,and manufacturing methods of fertilizers coated with organic-inorganic com-posite membranes(OICMs)in order to provide an overall update and summarize CRFs encapsulated by OICMs and provide an insight for future trends in the field of fertilizers.It is expected that utilizing CRFs encapsulated by OICMs and their characteristics for agricultural applications can provide innovative ideas and suggestions for developing novel CRFs suitable for modern and sustainable agriculture.展开更多
Nitrogen(N) fertilizers in agriculture suffer losses by volatilization of N to the air, surface runoff and leaching into the soil, resulting in low N use efficiency(NUE)( 50%) and raising severe environmental pollutio...Nitrogen(N) fertilizers in agriculture suffer losses by volatilization of N to the air, surface runoff and leaching into the soil, resulting in low N use efficiency(NUE)( 50%) and raising severe environmental pollutions. Controlledrelease nitrogen fertilizers(CRNFs) can control the release of N nutrients to NUE in crop production. Different methods were used to develop new CRNFs.However, different CRNF technologies are still underdeveloped due to inadequate controlling on N releasing time and/or unsustainable diffusion. The study on the influences of CRNF processing parameters on microbial conditions are lacking when the CRNFs composed of various bio-ingredients such as biochar, composts, and biowaste. The complexity of processing methods, material biodegradability, and other physical properties make current CRNFs of questionable value in agricultural production. This research aims to develop a novel biochar-compost-based controlled-release urea fertilizer(BCRUF) to preserve microbial properties carried by the compost. The BCRUF was synthesized by pelletizing the 50:50(dry, wt/wt) mixture of biochar and compost. BCRUF was loaded with urea and then spray-coated with polylactic acid(PLA). The releasing time of two types of BCRUFs, coated and uncoated with PLA, for 80% of N release in water was up to 6 h at three different temperatures(4, 23, and 40 °C), compared to conventional urea fertilizer and commercial environmentally smart N(ESN) fertilizer. The releasing time of coated BCRUF for 80% N release in soil was up to 192 h(8 days). Fourier-transform infrared spectroscopy(FTIR) analysis revealed that no new functional groups were found in the release solution, indicating no new chemical hazards generated. The differential scanning calorimetry(DSC)tests also verified that its thermal stability could be up to 160 °C. The microbe populations in the BCRUF pellets were reduced after the pelleting and drying processes in BCRUF fabrication, but a few bacteria can endure in the air-drying process. BCRUF pellets soaked in water for 4 days retained some bacteria. The BCRUF showed very promising characteristics to improve NUE and sustainability in agricultural production.展开更多
This study examined the release characteristics of different N forms in an uncoated slow/controlled-release compound fertilizer (UCRF) and the N uptake and N-use efficiency by rice plants. Water dissolution, soil le...This study examined the release characteristics of different N forms in an uncoated slow/controlled-release compound fertilizer (UCRF) and the N uptake and N-use efficiency by rice plants. Water dissolution, soil leaching, and pot experiments were employed. The dynamics of N release from the UCRF could be quantitatively described by three equations: the first-order kinetics equation [N1=N0 (1-e^-kt)], Elovich equation (N1=a + blnt), and parabola equation (N1=a + bt^0.5), with the best fitting by the first-order kinetics equation for different N (r= 0.9569^**-0.9999^**). The release potentials (No values estimated by the first-order kinetics equation) of different N in the UCRF decreased in the order of total N 〉 DON 〉 urea-N 〉 NH4^+-N 〉 NO3^-N in water, and total N 〉 NH4^+-N 〉 DON 〉 urea-N 〉 NO3^--N in soil, respectively, being in accordance with cumulative amounts of N release. The constants of N release rate (k values and b values) for different N forms were in decreasing order of total N 〉 DON 〉 NH4^+-N 〉 NO3^--N in water, whereas the k values were urea- N 〉DON 〉 NH4^+-N 〉 total N 〉 NO3^--N, and the b values were total N 〉 NH4^+-N 〉 DON 〉 NO3^--N 〉 urea-N in soil. Compared with a common compound fertilizer, the N-use efficiency, N-agronomy efficiency, and N-physiological efficiency of the UCRF were increased by 11.4%, 8.32 kg kg^-1, and 5.17 kg kg^-1, respectively. The ratios of different N to total N in the UCRF showed significant correlation with N uptake by rice plants. The findings showed that the first-order kinetics equation [Nt=N0 (l-e^kt)] could be used to describe the release characteristics of different N forms in the fertilizer. The UCRF containing different N forms was more effective in facilitating N uptake by rice compared with the common compound fertilizer containing single urea-N form.展开更多
Controlled release NPK compound fertilizers were prepared by means of in situ polymerization of monomers on the surface of fertilizer granules at room temperature. Methacrylate, α-methyl acrylic acid, and ethylene di...Controlled release NPK compound fertilizers were prepared by means of in situ polymerization of monomers on the surface of fertilizer granules at room temperature. Methacrylate, α-methyl acrylic acid, and ethylene dimethylacrylate were used as monomers, Dibenzoyl peroxide as initiator, and cobalt naphthenate, and triethyl amine as promoters. The structures of coating materials were characterized by IR spectra. The thermogravimetric analysis result indicated that the coating materials were of good thermal stability. The mean thickness of single coating measured with screw gauge was ca. 140 μm. The morphologies of uncoated and coated fertilizer granules analyzed by using scanning electron microscopy were changed from porosities and gullies to hills and plain. The release rate of coated compound fertilizers in water could be controlled by the hydrophicity and thickness of coating. The increase in coating hydrophicity caused the increase in release rate of fertilizer. The increase in thickness of coating slowed the release rate.展开更多
In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-s...In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modelingmethod are combined in this model. Data-driven modeling method based on limited memory partial least squares(LM-PLS) al.gorithm is used to build soft-senor models for some secondary variables.then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practicalprocess; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process.展开更多
基金provided by the National Key Research and Development Program of China(2018YFD0300904)Anhui Natural Science Foundation(2008085QC119)Key Fund Project of Anhui Department of Education(KJ2019A0176).
文摘One-time application of mixed fertilizer formed by the compounding of two controlled-release nitrogen fertilizers(CRUs)with targeted N supply during the periods from transplantation(TS)to panicle initiation(PI)and from PI to heading(HS)is expected to synchronize the double-peak N demand of rice.However,its effects on the yield and N use efficiency(NUE)of labor-intensive double-cropping rice were unknown.Two targeted CRU(CRU_(A)and CRU_(B))were compounded in five ratios(CRU_(A):CRU_(B)=10:0,7:3,5:5,3:7,and 0:10)to form five mixed fertilizers(BBFs):BBF1-5.A field experiment was performed to investigate the characteristics of N supply in early and late seasons under different BBFs and their effects on N uptake,yield,and ammonia volatilization(AV)loss from paddy fields of double-cropping rice.Conventional high-yield fertilization(CK,three split applications of urea)and zero-N treatments were established as controls.The N supply dropped significantly with the increased compound ratio of CRU_(B)during the period from TS to PI,but increased during the period from PI to HS.With the exception of the period from TS to PI in the late rice season,the N uptake of early and late rice maintained close synchronicity with the N supply of BBFs during the double-peak periods.Excessive N supply(BBF1 and BBF2)in the late rice season during the period from TS to PI increased N loss by AV.The effect of BBF on grain yield increase varied widely between seasons,irrespective of year.Among the BBFs,the BBF2 treatment of early rice not only stabilized the spikelets per panicle but also ensured a high number of effective panicles by promoting N uptake during the period from TS to PI and a high grain-filling percentage by appropriately reducing the N supply at the later PI stage,resulting in the highest rice yield.While stabilizing the effective panicle number,the BBF4 treatment of late rice increased the number of spikelets per panicle by promoting N uptake during the period from PI to HS,resulting in the highest rice yield.The two-year average yield and apparent N recovery efficiency of the BBF2 treatment during the early rice season were 9.6 t ha 1 and 45.3%,while those of late rice in BBF4 were 9.6 t ha 1 and 43.0%,respectively.The yield and NUE indexes of BBF2 in early rice and BBF4 in late rice showed no significant difference from those of CK.The AVs of BBF2 during the early rice season and of BBF4 during the late rice season were 50.0%and 76.8%lower,respectively,than those of CK.BBF2 and BBF4 could effectively replace conventional urea split fertilization in early and late rice seasons,ensuring rice yield and NUE and reducing AV loss in paddy fields.
基金funded by the Fund Projects of the Central Government in Guidance of Local Science and Technology Development(GuiKeZY22096020)Guangxi Key R&D Plan Project(2023AB23078)+1 种基金National Natural Science Foundation of China(82260750)Appropriate Technology Development and Promotion Project of Guangxi Traditional Chinese Medicine Administration(GZSY23-07).
文摘To explore the effect of fertilizers on the yield and quality of Platostoma palustre,in this study,P.palustre was utilized as the research material,and field experiments were conducted with different application rates of compound fertilizer and organic fertilizer and non-targeted metabolomics analysis was further employed to compare and analyze the differences in the metabolic components between the compound fertilizer and organic fertilizer treatments.The results of field experiments demonstrated that both compound and organic fertilizers could promote the fresh weight,shade dry weight,and dry weight of P.palustre,with 450 kg hm−2 compound fertilizer and 4500 kg hm−2 organic fertilizer presenting the optimum effects.Non-targeted metabolomics revealed that 1096 metabolites were identified in 450 kg hm−2 compound fertilizer and 4500 kg hm−2 organic fertilizer,and 885 metabolites were annotated in the Human Metabolome Database(HMDB).There were 318 differential metabolites(DMs)found between the two treatments,and 263 metabolites were annotated in HMDB.The abundance of 2 phenolic compounds and 12 organic oxygen compounds in the treatment of 4500 kg hm−2 organic fertilizer was significantly higher than that of the 450 kg hm−2 compound fertilizer,while the abundance of 21 organic oxygen compounds,14 flavonoids,3 phenolic compounds,and 5 cinnamic acids and their derivatives was significantly up-regulated in 450 kg hm−2 compound fertilizer treatment.In addition,5 metabolic pathways were significantly enriched,and the flavone and flavonol biosynthesis was the most significantly differential metabolic pathway.These results suggested that the application of both compound fertilizers and organic fertilizers can increase the yield of P.palustre,but their effects on metabolites were different.This study has considerable implications for the planting and cultivation of P.palustre,furnishing a scientific foundation for an efficient and rational application of fertilizer.
文摘This paper was to explore the mechanism of single basal application of controlled-release fertilizers for increasing yield of rice (Oryza sativa L.). Pot trials and cylinder trials were carried out from 2002 to 2005 to study the influences of single basal application of 3 controlled-release fertilizers on the changes of soil available N, root development, senescence and lodging resistance at late growth stages. Results showed that at 30 days after fertilization, single basal application of controlled-release fertilizers coated with vegetal-substance (CRF1) and polymer materials (CRF3) increased soil available N to 12.0 and 147.9%, respectively, in comparison to split fertilization of rice-specific fertilizer (RSF1). Treatments of the two CRFs obviously benefited the development of root system, resulting in greater rice root weights with extensive distribution and higher root activity. In addition, the two CRF treatments, in comparison to RSF1, enhanced chlorophyll consents of the flag leaves to 9.5 and 15.5%, and soluble protein up to 89.7 and 108.0% respectively. Application of the two CRFs also made the base of rice stems strong and large, declined the proportion of shoot and root, increased root depth index. Though relatively low K rate, single basal application of the CRF3 coated with NH4MgPO4 could also promote the development of root system, enhance root activity and some physiological functions of flag leaves. Based on these results, it was concluded that major mechanisms for increasing rice yield by single basal application of the CRFs should be attributed to grater soil available N supply, superior development of root systems, better nutrient absorption capacity, slower senescence and enhancement of lodging resistance at late stages.
基金the National Key Research and Development Program of China(22017YFD0301203,2018YFD0300803)the Jiangsu Key Research and Development Program,China(BE2017369)the Jiangsu Agricultural Science and Technology Innovation Fund,China(CX(18)1002)。
文摘This experiment explored the effects of single application of seven types of slow-and controlled-release fertilizers on rice yield and various population characteristics.Based on a study of the nitrogen(N)release characteristics of these fertilizers,pot experiments were conducted in 2018 and 2019 with split fertilization(CK,urea applied split equally at basal and panicle initiation stages,respectively)as control,which assessed the effects on SPAD value,yield and yield components,dynamic changes of rice tillers and dry matter accumulation.The results showed that the N release characteristics of different types of slow-and controlled-release fertilizers were significantly different.Polymer-coated urea(PCU)showed a controlledrelease mode and provided sustained release throughout the whole growth stages.Sulfur-coated urea(SCU)exhibited a slow-release mode,providing insufficient release at the middle and late stages.Urease inhibitor urea(AHA)and ureaformaldehyde(UF)yielded a rapid-release mode,with an explosive N release at the early stage and no release at the middle and late stages.These results showed that PCU delayed the peak seedling stage.Compared with CK,dry matter accumulation and SPAD showed no significant differences,and due to the continuous release of N throughout the growth stages,rice yield,spikelets per panicle,seed setting rate,and 1000-grain weight were all increased.Owing to the lack of N supply at the late stage and the low number of spikelets,SCU led to a reduction of rice yield,which is nevertheless not statistically significant.AHA and UF were susceptible to environmental factors and had varying effects on rice yield.The results of this experiment indicated that given a fixed amount of N applied in a pot,the stronger the N supply capacity and the longer the effective duration time of the fertilizer,the higher the dry matter accumulation at the late growth stage,and the higher the rice yield.
基金Supported by the National Natural Science Foundation of China(No.41306071)the CAS STS Program(No.KFJ-SW-STS-143)+1 种基金the NSFC-Shandong Union Project(No.U1406402-5)the Public Science and Technology Research Funds Projects of Ocean(Nos.201405038-2,201305016-2)
文摘Encapsulation of water-soluble nitrogen fertilizers by membranes can be used to control the release of nutrients to maximize the fertilization ef fect and reduce environmental pollution.In this research,we formulated a new double-coated controlled-release fertilizer(CRF)by using food-grade microcrystalline wax(MW)and marine polysaccharide derivatives(calcium alginate and chitosan-glutaraldehyde copolymer).The pellets of water-soluble nitrogen fertilizer were coated with the marine polysaccharide derivatives and MW.A convenient and eco-friendly method was used to prepare the CRF.Scanning electron microscopy(SEM)and Fourier transform infrared spectroscopy(FTIR)were used to characterize the morphology and composition of the products.The nitrogen-release properties were determined in water using UV-Vis spectrophotometry.The controlled-release properties of the fertilizer were improved dramatically after coating with MW and the marine polysaccharide derivatives.The results show that the double-coated CRFs can release nitrogen in a controlled manner,have excellent controlled-release features,and meet the European Standard for CRFs.
基金partly supported by the National Natural Science Foundation of China(NFSC)(30230230 and 30070429)
文摘Effects of controlled-release fertilizers (CRFs) (C-AS, polyolefin coated ammonium sulfate, 50-day-type; Dd-LP, polyolefincoated urea with dicyandiamide, 40-day-type; C-ANP, polyolefin coated ammonium nitrate phosphate, 40-day-type; andC-DAP, polyolefin coated diammonium acid phosphate, 40-day-type), ammonium sulphate and no fertilizer control, andtheir application methods (spot, band, surface and mixed) on germination and seedling development of sweet corn (Zeamays L.var. saccharata Sturt.) and dent corn (Zea mays L.var. indentata Sturt.) were investigated in a greenhouse. Underco-situs application (band and spot) of CRFs, there were no obvious differences in the germination speed and rate for bothdent corn and sweet corn relative to control. Mortality rates of sweet corn seedlings under co-situs application were highin experiment 1, but were very low in experiment 2, because the environmental conditions were different in the twoexperiments. That is, under lower temperature and weaker sunlight, young seedlings easily die due to high soil nutrientconcentration and slow growth speed of corn. Shoot weight of both dent and sweet corn did not greatly decrease inexperiment 1. In experiment 2, there were no significant differences in shoot and root weight of both corns between co-situs and surface or mixed application methods. However, with spot and band application of ammonium sulfate, shoot androot weight were significantly reduced. Soil EC and pH were considerably affected by co-situs application, especially atthe fertilizer application site. For both dent and sweet corn, EC in the 0-3 cm soil was significantly higher under co-situsapplication and surface application than that under mixed application, whereas in the 3-6 cm soil depth the situation wasreversed. Compared with control, mixed application of CRFs decreased soil pH slightly (0-3 cm depth) or greatly (3-6 cmdepth).
基金supported by the Natural Science Foundation of Jiangsu Province(BK20200539)Postdoctoral Research Foundation of China(2019M661863)Jiangsu Provincial Key Research and Development Program(BE2019377,BE2019343)。
文摘Controlled-release urea(CRU)is widely reported to supply crop nitrogen(N)demand with one basal application,thus effectively replacing split applications of urea without diminishing grain yield and N use efficiency(NUE).However,its use for replacement for high-yield split applications of urea(CK)for rice is untested.In addition,the degree to which greenhouse gas(GHG)emissions in rice systems are affected when CRU is substituted for CK remains unclear.During 2017 and 2018,we sampled plant growth and gas emissions in a rice paddy field treated with three CRU types(sulfur-coated urea[SCU],polymer-coated urea[PCU],and bulk blended CRU[BBU])applied via two methods(surface broadcasting on the soil and subsurface banding at 5 cm depth),with CK as a control.The three CRUs led to different soil NH_(4)^(+)-N dynamics,and the N supply pattern under BBU was more beneficial for rice seedling establishment than under SCU and PCU,resulting in grain yield and NUE comparable to those under CK.CRU type showed no significant effect on either CH_(4) emissions or N_(2)O emissions,and broadcast CRUs exhibited significantly higher total GHG emissions than CK.However,banded CRUs significantly reduced the total GHG emissions in comparison with broadcast CRUs,by 9.2%averaged across the two years.Reduced CH_(4) emissions,particularly during the period prior to the middle drainage,contributed largely to the GHG difference.With comparably high grain yield and low total GHG emissions,banded BBU showed a low yield-scaled GHG(GHG emissions divided by grain yield)comparable to that under CK in both years.Overall,our study suggested that N management synchronized with rice demand and contributing to a high NUE tended to minimize yield-scaled GHG.Broadcast CRU can hardly substitute for CK in terms of either grain yield or GHG emissions,but banded BBU is a promising N management strategy for sustaining rice production while minimizing environmental impacts.
文摘Fertilizers contribute greatly to high yields but also result in environmental non-point contamination, including the emission of greenhouse gas(N 2O) and eutrophication of water bodies. How to solve this problem has become a serious challenge, especially for China as its high ecological pressure. Controlled-release fertilizer(CRF) has been developed to minimize the contamination while keeping high yield and has become a green fertilizer for agriculture. Several CRFs made with special coating technology were used for testing the fertilizer effects in yield and environment through pot experiment and field trial. The result indicated that the CRFs had higher N use efficiency, thus reducing N loss through leaching and volatilization while keeping higher yields. Comparing with imported standard CRFs, the test on CRFs showed similar fertilizer effect but with much lower cost. CRFs application is becoming a new approach for minimizing non-point contamination in agriculture.
基金supported by the International Scientific and Technological Cooperation Projects of China (2015DFA20790)the National Natural Science Foundation of China (21577172,41501322)the National Basic Research Program (973 program) of China (2013CB127406)
文摘Coated controlled-release fertilizers (CRFs) have been widely applied in agriculture due to their increased efficiency. However, the widespread and a lot of coated CRFs application may leave undesired coating residues in the soil due to their slow degradation. Limited information is available on the effects of substantial residual coatings on the soil bacterial community. By adding 0, 5, 10, 20, and 50 times quantities of residual coating from conventional application amount of resin and water-soluble coated CRFs, we studied the responses of soil properties and bacterial community composition to these two residual coatings in black soil. The results showed that the resin and water-soluble coatings did not essentially alter the properties of black soil or cause dramatic changes to bacterial diversity within the test concentration range. The residual resin and water-soluble coatings also did not distinctly alter the relative abundance of the top ten bacteria at phylum level. Heatmap results suggested that the treatments were basically clustered into two groups by concentration rather than types of coating material. Pearson correlation analysis showed that the Simpson's diversity index of the bacterial community was significantly correlated with microbial biomass carbon (MBC, r=0.394, P〈0.05), and the richness index abundance-based coverage estimator (ACE) of the bacterial community was significantly correlated with microbial biomass nitrogen (MBN, t=0.407, P〈0.05). Overall, results of this study suggested that substantial residual resin and water-soluble coatings with 0-50 times quantities of residual coating from conventional application amount of coated CRFs did not generate obviously negative impacts on the bacterial community in black soil.
基金National Natural Science Foundation of China(30270770)Foundation for Achievement Transfer(02EFN214301156) Key Subject Foundation of Hunan Academy of Agricultural Sciences(03-05).
文摘The physiological mechanism of photosynthetic function and senescence of rice leaves was studied by using early rice variety Baliangyou 100 and late rice variety Weiyou 46, treated with controlled-release nitrogen fertilizer (CRNF), urea and no nitrogen fertilizer. CRNF showed obvious effects on delaying the senescence and prolonging photosynthetic function duration of rice leaves. Compared with urea, CRNF could significantly increase the chlorophyll content of functional leaves in both early and late rice varieties, and this difference between the treatments became larger as rice growth progressed; CRNF increased the activities of active oxygen scavenging enzymes super oxide dismutase (SOD) and peroxidase (POD), and decreased the accumulation amount of malondialdehyde (MDA) in functional leaves during leaf aging; Photosynthetic rate of functional leaves in CRNF treatment was significantly higher than that in urea treatment. The result also indicated that CRNF could effectively regulate the contents of indole-3-acetic acid (IAA) and abscisic acid (ABA) in functional leaves; IAA content was higher and ABA content was lower in CRNF treatment than those in urea treatment. Therefore, application of CRNF could increase the rice yield significantly due to these physiological changes in the functional leaves.
基金Project (No. X10133) supported by Kemira Global AgricultureDevelopment Center, Finland
文摘Experiments were carried out with citrus (Citrus reticulate) and tea (Podocarpus fleuryi Hickel.) to study the effects of compound fertilizers on their yields and quality. In the citrus experiment, application of compound fertilizers increased available P, K and Mg contents in soil but decreased alkali-hydrolyzable N contents in soil and N, P and K contents in leaves. In the tea ex- periment, application of compound fertilizers increased available P, K and Mg contents in soil and N, P, K and Mg contents in leaves but decreased alkali-hydrolyzable N in soil compared with the urea treatment. Application of compound fertilizers could improve the quality of citrus and tea, increase their yields and enhance their economical profits significantly. Compared with the control, application of compound fertilizers increased citrus yields by 6.31, 12.94 and 17.69 t/ha, and those of tea by 0.51, 0.86 and 1.30 t/ha, respectively. Correspondingly, profits were increased by 21.4% to 61.1% for citrus and by 10.0% to 15.7% for tea. Optimal rates of compound fertilizers were recommended for both crops.
文摘[Objectives]The paper was to investigate the effects of different application rates of pesticides and fertilizers on wheat stripe rust and wheat yield.[Methods]Two-factor split block design was adopted.[Results]Different application rates of pesticides and chemical fertilizers would affect the incidence of wheat stripe rust,and further affect the yield of wheat.Triadimefon had no significant effect on wheat yield,and potassium sulfate compound fertilizer had significant effect on wheat yield,while their interaction had no significant effect on wheat yield.There were significant differences in wheat yield among the 15 treatment combinations,which may be due to the fact that the application rate of potassium sulfate compound fertilizer had extremely significant effect on wheat yield.[Conclusions]Under the wheat/green manure/maize zonal rotation system in Bijie,the sowing width of wheat is guaranteed to be 0.5 m under the 1.65 m zonal cropping system,and the sowing rate of wheat is arranged according to the basic seedling of 1.2 million plants/hm^(2).In the early stage of wheat stripe rust,15%triadimefon WP can be sprayed evenly at the dose of 1050 g/hm^(2)by a high-power sprayer in a sunny day.
基金Supported by Social People's Livelihood Science and Technology Innovation Project of Yongchuan District。
文摘[Objectives] This study was conducted to screen compound fertilizers suitable for ginger( Zingiber officinale Roscoe). [Methods]The effects of several different compound fertilizers on the growth,development,yield,and quality of ginger were compared under field test conditions. [Results] Treatment T2( 17-9-19) could effectively promote the growth and development of ginger plants and increase the yield of ginger. The content of soluble sugars in ginger was the highest in T2;the content of vitamin C in ginger was the highest in treatment T1( 15-15-15);treatment T2 showed the highest content of free amino acids in ginger;the content of proteins in ginger treated by T3( 22-8-10) was the highest;T3 also showed the highest content of gingerol;and treatment T2 had the lowest nitrate content. Comprehensive from the growth,yield and quality effect of ginger plants,treatment T2 was the best. [Conclusions]This study provides scientific basis for the rational fertilization and high-yield and efficient cultivation of ginger.
基金Supported by National Key Program of Science and Technology(2006BAC01A16)Natural Science Foundation Project of Chongqing(CSTC,2009BA0002)The special fund project for the scientific reserch of the forest public welfare industry(No.201204212).
文摘In order to study the effects of organic compound fertilizers on soil water infiltration characteristics,an indoor one-dimensional soil column water infiltration test was carried out.Six soil sample treatment groups were set,namely marshy solonchak(control check,CK for short),bamboo charcoal-mixed marshy solonchak,Difuyuan-mixed marshy solonchak,salined flavo-aquic soil(CK),bamboo charcoal-mixed salined flavo-aquic soil and Difuyuan-mixed salined flavo-aquic soil.After 120 min of infiltration,compared with the CK groups of marshy solonchak and salined flavo-aquic soil,the cumulative infiltration volumes of the bamboo charcoal and difuyuan treatment groups increased by -18.78%,-3.93% and 25.77%,6.53%,respectively;and the displacement increased by -18.93%,1.64% and 22.6%,12.5%,respectively.The relationship between the wetting front displacement and time conformed to a linear function.The effects of organic compound fertilizers on the initial infiltration rates of marshy solonchak and salined flavo-aquic soil were significant,and the relationship between infiltration rate and time conformed to a power function.The vertical distribution of soil moisture under the application of organic compound fertilizers showed that the moisture content changed relatively small within 5 cm of the surface soil layer,then decreased slowly within 5-10 cm of the soil layer,and decreased drastically below 10 cm of soil layer;and relative to the CK group,the application of organic compound fertilizers was beneficial to increase the moisture content of salined flavo-aquic soil.The organic compound fertilizers reduced the water infiltration capacity of marshy solonchak and improved the water infiltration capacity of salined flavo-aquic soil.Compared with Difuyuan,bamboo charcoal reduced the water infiltration capacity of marshy solonchak better and improved the water permeability of salined flavo-aquic soil more significantly.
文摘[Objective] The aim was to explore effects of FCMP compound fertilizer on growth, development and yield of early rice. [Method] Based on lower-graded phos- phate resource, effects of FCMP compound fertilizers on yield and growth of early rice in a field were researched. [Result] FCMP compound fertilizers 0, 1 and 2 en- hanced rice yield, increasing by 21.86%, 20.25% and 13.46%, compared with the rice applied with conventional fertilizer; number of productive ears and grain number per ear in unit area were improved by FCMP compound fertilizer, for example, the two factors achieved the highest with FCMP compound fertilizer 1, increasing by 11.70% and 19.63%. Furthermore, FCMP compound fertilizer promoted plant height and tiller number, maintained high photosynthetic efficiency, enhanced lodging-resis- tance and guaranteed stable and high yield. [Conclusion] The research is of theoret- ical and practical significance for further exploration of production techniques and application of FCMP compound fertilizer.
基金funded by the Key Project of the Science and Technology Department of Jilin Province,China(grant No.20220203079SF)Independent Research Project in 2020 of State Key Laboratory of Supramolecular Structure and Materials(grant No.CXKT202008).
文摘Heavy use of conventional fertilizers can lead to negative environmental concerns.Controlled-release fertilizers(CRFs)can effectively reduce the amounts of fertilizers used,improve the availability of fer-tilizers,and which is conducive to the protection of the ecological environment and sustainable devel-opment of agriculture.Therefore,it is imperative to develop and use CRFs as an alternative to traditional fertilizers.This review aims to present the classification,raw material composition,benefits,release process,release mode,and manufacturing methods of fertilizers coated with organic-inorganic com-posite membranes(OICMs)in order to provide an overall update and summarize CRFs encapsulated by OICMs and provide an insight for future trends in the field of fertilizers.It is expected that utilizing CRFs encapsulated by OICMs and their characteristics for agricultural applications can provide innovative ideas and suggestions for developing novel CRFs suitable for modern and sustainable agriculture.
基金funding supports from the South Dakota Governor’s Office of Economic Development (POC2020-04)the USDA NIFA through the North Central Regional Sun Grant Center, and Hatch Projects (3AR652, 3AR689, and 3AH658) of the South Dakota Agricultural Experiment Station。
文摘Nitrogen(N) fertilizers in agriculture suffer losses by volatilization of N to the air, surface runoff and leaching into the soil, resulting in low N use efficiency(NUE)( 50%) and raising severe environmental pollutions. Controlledrelease nitrogen fertilizers(CRNFs) can control the release of N nutrients to NUE in crop production. Different methods were used to develop new CRNFs.However, different CRNF technologies are still underdeveloped due to inadequate controlling on N releasing time and/or unsustainable diffusion. The study on the influences of CRNF processing parameters on microbial conditions are lacking when the CRNFs composed of various bio-ingredients such as biochar, composts, and biowaste. The complexity of processing methods, material biodegradability, and other physical properties make current CRNFs of questionable value in agricultural production. This research aims to develop a novel biochar-compost-based controlled-release urea fertilizer(BCRUF) to preserve microbial properties carried by the compost. The BCRUF was synthesized by pelletizing the 50:50(dry, wt/wt) mixture of biochar and compost. BCRUF was loaded with urea and then spray-coated with polylactic acid(PLA). The releasing time of two types of BCRUFs, coated and uncoated with PLA, for 80% of N release in water was up to 6 h at three different temperatures(4, 23, and 40 °C), compared to conventional urea fertilizer and commercial environmentally smart N(ESN) fertilizer. The releasing time of coated BCRUF for 80% N release in soil was up to 192 h(8 days). Fourier-transform infrared spectroscopy(FTIR) analysis revealed that no new functional groups were found in the release solution, indicating no new chemical hazards generated. The differential scanning calorimetry(DSC)tests also verified that its thermal stability could be up to 160 °C. The microbe populations in the BCRUF pellets were reduced after the pelleting and drying processes in BCRUF fabrication, but a few bacteria can endure in the air-drying process. BCRUF pellets soaked in water for 4 days retained some bacteria. The BCRUF showed very promising characteristics to improve NUE and sustainability in agricultural production.
文摘This study examined the release characteristics of different N forms in an uncoated slow/controlled-release compound fertilizer (UCRF) and the N uptake and N-use efficiency by rice plants. Water dissolution, soil leaching, and pot experiments were employed. The dynamics of N release from the UCRF could be quantitatively described by three equations: the first-order kinetics equation [N1=N0 (1-e^-kt)], Elovich equation (N1=a + blnt), and parabola equation (N1=a + bt^0.5), with the best fitting by the first-order kinetics equation for different N (r= 0.9569^**-0.9999^**). The release potentials (No values estimated by the first-order kinetics equation) of different N in the UCRF decreased in the order of total N 〉 DON 〉 urea-N 〉 NH4^+-N 〉 NO3^-N in water, and total N 〉 NH4^+-N 〉 DON 〉 urea-N 〉 NO3^--N in soil, respectively, being in accordance with cumulative amounts of N release. The constants of N release rate (k values and b values) for different N forms were in decreasing order of total N 〉 DON 〉 NH4^+-N 〉 NO3^--N in water, whereas the k values were urea- N 〉DON 〉 NH4^+-N 〉 total N 〉 NO3^--N, and the b values were total N 〉 NH4^+-N 〉 DON 〉 NO3^--N 〉 urea-N in soil. Compared with a common compound fertilizer, the N-use efficiency, N-agronomy efficiency, and N-physiological efficiency of the UCRF were increased by 11.4%, 8.32 kg kg^-1, and 5.17 kg kg^-1, respectively. The ratios of different N to total N in the UCRF showed significant correlation with N uptake by rice plants. The findings showed that the first-order kinetics equation [Nt=N0 (l-e^kt)] could be used to describe the release characteristics of different N forms in the fertilizer. The UCRF containing different N forms was more effective in facilitating N uptake by rice compared with the common compound fertilizer containing single urea-N form.
基金Supported by Natural Science Foundation of China(30571086)
文摘Controlled release NPK compound fertilizers were prepared by means of in situ polymerization of monomers on the surface of fertilizer granules at room temperature. Methacrylate, α-methyl acrylic acid, and ethylene dimethylacrylate were used as monomers, Dibenzoyl peroxide as initiator, and cobalt naphthenate, and triethyl amine as promoters. The structures of coating materials were characterized by IR spectra. The thermogravimetric analysis result indicated that the coating materials were of good thermal stability. The mean thickness of single coating measured with screw gauge was ca. 140 μm. The morphologies of uncoated and coated fertilizer granules analyzed by using scanning electron microscopy were changed from porosities and gullies to hills and plain. The release rate of coated compound fertilizers in water could be controlled by the hydrophicity and thickness of coating. The increase in coating hydrophicity caused the increase in release rate of fertilizer. The increase in thickness of coating slowed the release rate.
基金Supported by the National Natural Science Foundation of China (No.60421002) and the New Century 151 Talent Project of Zhejiang Province.
文摘In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modelingmethod are combined in this model. Data-driven modeling method based on limited memory partial least squares(LM-PLS) al.gorithm is used to build soft-senor models for some secondary variables.then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practicalprocess; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process.