Software-Defined Networking(SDN)provides flexible and global network management by decoupling control plane from data plane,and multiple controllers are deployed in the network in a logically centralized and physicall...Software-Defined Networking(SDN)provides flexible and global network management by decoupling control plane from data plane,and multiple controllers are deployed in the network in a logically centralized and physically distributed way.However,the existing approaches generally deploy the controllers with the same type in the network,which easily causes homogeneous controller common-mode fault.To this end,this paper proposes heterogeneous controller deployment in the SDN,considering the different types of controllers and relevant criteria(e.g.,delay,control link interruption rate,and controller fault rate).Then,we introduce a Safe and Reliable Heterogeneous Controller Deployment(SRHCD)approach,consisting of two stages.Stage 1 determines the type and the number of heterogeneous controllers required for the SDN network based on the dynamic programming.Stage 2 divides the SDN network into multiple subnets by k-means algorithm and improves the genetic algorithm to optimize the heterogeneous controller deployment in these SDN subnets to ensure reliable switch-controller communications.Finally,the simulation results show that the proposed approach can effectively reduce the control plane fault rate and increase the attack difficulties.Besides,the switch-controller delay has been lowered by 16.5%averagely.展开更多
In light of the escalating demand and intricacy of services in contemporary terrestrial,maritime,and aerial combat operations,there is a compelling need for enhanced service quality and efficiency in airborne cluster ...In light of the escalating demand and intricacy of services in contemporary terrestrial,maritime,and aerial combat operations,there is a compelling need for enhanced service quality and efficiency in airborne cluster communication networks.Software-Defined Networking(SDN)proffers a viable solution for the multifaceted task of cooperative communication transmission and management across different operational domains within complex combat contexts,due to its intrinsic ability to flexibly allocate and centrally administer network resources.This study pivots around the optimization of SDN controller deployment within airborne data link clusters.A collaborative multi-controller architecture predicated on airborne data link clusters is thus proposed.Within this architectural framework,the controller deployment issue is reframed as a two-fold problem:subdomain partition-ing and central interaction node selection.We advocate a subdomain segmentation approach grounded in node value ranking(NDVR)and a central interaction node selection methodology predicated on an enhanced Artificial Fish Swarm Algorithm(AFSA).The advanced NDVR-AFSA(Node value ranking-Improved artificial fish swarm algorithm)algorithm makes use of a chaos algorithm for population initialization,boosting population diversity and circumventing premature algorithm convergence.By the integration of adaptive strategies and incorporation of the genetic algorithm’s crossover and mutation operations,the algorithm’s search range adaptability is enhanced,thereby increasing the possibility of obtaining globally optimal solutions,while concurrently augmenting cluster reliability.The simulation results verify the advantages of the NDVR-IAFSA algorithm,achieve a better load balancing effect,improve the reliability of aviation data link cluster,and significantly reduce the average propagation delay and disconnection rate,respectively,by 12.8%and 11.7%.This shows that the optimization scheme has important significance in practical application,and can meet the high requirements of modern sea,land,and air operations to aviation airborne communication networks.展开更多
基金National Key Research and Development Project of China(No.2020YFB1804803)National Natural Science Foundation of China(No.61802429,61872382).
文摘Software-Defined Networking(SDN)provides flexible and global network management by decoupling control plane from data plane,and multiple controllers are deployed in the network in a logically centralized and physically distributed way.However,the existing approaches generally deploy the controllers with the same type in the network,which easily causes homogeneous controller common-mode fault.To this end,this paper proposes heterogeneous controller deployment in the SDN,considering the different types of controllers and relevant criteria(e.g.,delay,control link interruption rate,and controller fault rate).Then,we introduce a Safe and Reliable Heterogeneous Controller Deployment(SRHCD)approach,consisting of two stages.Stage 1 determines the type and the number of heterogeneous controllers required for the SDN network based on the dynamic programming.Stage 2 divides the SDN network into multiple subnets by k-means algorithm and improves the genetic algorithm to optimize the heterogeneous controller deployment in these SDN subnets to ensure reliable switch-controller communications.Finally,the simulation results show that the proposed approach can effectively reduce the control plane fault rate and increase the attack difficulties.Besides,the switch-controller delay has been lowered by 16.5%averagely.
基金supported by the following funds:Defense Industrial Technology Development Program Grant:G20210513Shaanxi Provincal Department of Science and Technology Grant:2021KW-07Shaanxi Provincal Department of Science and Technology Grant:2022 QFY01-14.
文摘In light of the escalating demand and intricacy of services in contemporary terrestrial,maritime,and aerial combat operations,there is a compelling need for enhanced service quality and efficiency in airborne cluster communication networks.Software-Defined Networking(SDN)proffers a viable solution for the multifaceted task of cooperative communication transmission and management across different operational domains within complex combat contexts,due to its intrinsic ability to flexibly allocate and centrally administer network resources.This study pivots around the optimization of SDN controller deployment within airborne data link clusters.A collaborative multi-controller architecture predicated on airborne data link clusters is thus proposed.Within this architectural framework,the controller deployment issue is reframed as a two-fold problem:subdomain partition-ing and central interaction node selection.We advocate a subdomain segmentation approach grounded in node value ranking(NDVR)and a central interaction node selection methodology predicated on an enhanced Artificial Fish Swarm Algorithm(AFSA).The advanced NDVR-AFSA(Node value ranking-Improved artificial fish swarm algorithm)algorithm makes use of a chaos algorithm for population initialization,boosting population diversity and circumventing premature algorithm convergence.By the integration of adaptive strategies and incorporation of the genetic algorithm’s crossover and mutation operations,the algorithm’s search range adaptability is enhanced,thereby increasing the possibility of obtaining globally optimal solutions,while concurrently augmenting cluster reliability.The simulation results verify the advantages of the NDVR-IAFSA algorithm,achieve a better load balancing effect,improve the reliability of aviation data link cluster,and significantly reduce the average propagation delay and disconnection rate,respectively,by 12.8%and 11.7%.This shows that the optimization scheme has important significance in practical application,and can meet the high requirements of modern sea,land,and air operations to aviation airborne communication networks.