期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Conv1D-LSTM混合模型的长时间序列日最高温预测研究
1
作者
杜智勇
杨帆
杨文杰
《北京印刷学院学报》
2024年第9期52-57,共6页
针对传统方法难以处理高维度数据捕捉气温数据中的非线性模式和复杂动态特征的问题,本文提出一种基于卷积神经网络(Conv1D)与长短期记忆网络(LSTM)相结合的混合模型,用于长时间序列高温预测研究。数据集包含北京市2014年至2023年间的气...
针对传统方法难以处理高维度数据捕捉气温数据中的非线性模式和复杂动态特征的问题,本文提出一种基于卷积神经网络(Conv1D)与长短期记忆网络(LSTM)相结合的混合模型,用于长时间序列高温预测研究。数据集包含北京市2014年至2023年间的气象数据,包括天气、日最低温、日最高温、风向等特征。通过特征工程处理,将天气和风向特征编码,并对温度特征归一化。构建的Conv1D-LSTM混合模型创新性地融合Conv1D以捕获时间序列中的局部特征,融合LSTM以学习长期依赖关系。与传统模型相比,该混合模型的均方根误差(RMSE)和平均绝对误差(MAE)分别降低约17.3%和20.5%,同时R2分数提高约1.06%,表明该模型具有更高的预测精度和泛化能力。
展开更多
关键词
日最高温预测
conv
1
d-lstm
混合模型
长时间序列
预测精度
下载PDF
职称材料
题名
基于Conv1D-LSTM混合模型的长时间序列日最高温预测研究
1
作者
杜智勇
杨帆
杨文杰
机构
北京印刷学院
出处
《北京印刷学院学报》
2024年第9期52-57,共6页
文摘
针对传统方法难以处理高维度数据捕捉气温数据中的非线性模式和复杂动态特征的问题,本文提出一种基于卷积神经网络(Conv1D)与长短期记忆网络(LSTM)相结合的混合模型,用于长时间序列高温预测研究。数据集包含北京市2014年至2023年间的气象数据,包括天气、日最低温、日最高温、风向等特征。通过特征工程处理,将天气和风向特征编码,并对温度特征归一化。构建的Conv1D-LSTM混合模型创新性地融合Conv1D以捕获时间序列中的局部特征,融合LSTM以学习长期依赖关系。与传统模型相比,该混合模型的均方根误差(RMSE)和平均绝对误差(MAE)分别降低约17.3%和20.5%,同时R2分数提高约1.06%,表明该模型具有更高的预测精度和泛化能力。
关键词
日最高温预测
conv
1
d-lstm
混合模型
长时间序列
预测精度
Keywords
daily maximum temperature prediction
conv1d-lstm hybrid model
long-term time series
prediction accuracy
分类号
TP311 [自动化与计算机技术—计算机软件与理论]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Conv1D-LSTM混合模型的长时间序列日最高温预测研究
杜智勇
杨帆
杨文杰
《北京印刷学院学报》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部