基于生成对抗网络中的循环一致性原则,提出了一个基于循环一致性损失的知识图谱嵌入模型。该模型首先使用ConvE模型利用头实体和关系构造的“图片”对尾实体进行预测,再利用尾实体和关系构造的“逆图片”对头实体进行预测。同时根据循...基于生成对抗网络中的循环一致性原则,提出了一个基于循环一致性损失的知识图谱嵌入模型。该模型首先使用ConvE模型利用头实体和关系构造的“图片”对尾实体进行预测,再利用尾实体和关系构造的“逆图片”对头实体进行预测。同时根据循环一致性原理,构造了ConvE模型的一个新的损失函数,解决了网络的可逆性。在WN18、FB15k以及YAGO3-10三个数据集上设计实验,证明了模型有效地缩短了头实体和原头实体的语义空间距离。Based on the cyclic consistency principle in generative adversarial networks, a knowledge graph embedding model based on cyclic consistency loss is proposed. Firstly, the ConvE model is used to predict the tail entity by using the “picture” constructed by the head entity and the relationship, and then the “inverse picture” constructed by the tail entity and the relationship is used to predict the head entity. According to the principle of cyclic consistency, a new loss function of ConvE model is constructed to solve the reversibility of the network. Experiments are designed on WN18, FB15k and YAGO3-10 data sets, and it is proved that the model can effectively shorten the semantic space distance between the header entity and the original header entity.展开更多
The indirect use of language is a common,widespread phenomenon in daily linguistic communication,with an aim to keep a harmonious interpersonal relationship.Though indirectness manifests itself in many ways,this paper...The indirect use of language is a common,widespread phenomenon in daily linguistic communication,with an aim to keep a harmonious interpersonal relationship.Though indirectness manifests itself in many ways,this paper is to discuss the four different forms of indirectness in people's daily communications with typical examples found in both Chinese and English:politeness,indirect speech acts,conversational implicature and figures of speech.展开更多
Though numerical wave models have been applied widely to significant wave height prediction,they consume massive computing memory and their accuracy needs to be further improved.In this paper,a two-dimensional(2D)sign...Though numerical wave models have been applied widely to significant wave height prediction,they consume massive computing memory and their accuracy needs to be further improved.In this paper,a two-dimensional(2D)significant wave height(SWH)prediction model is established for the South and East China Seas.The proposed model is trained by Wave Watch III(WW3)reanalysis data based on a convolutional neural network,the bidirectional long short-term memory and the attention mechanism(CNNBiLSTM-Attention).It adopts the convolutional neural network to extract spatial features of original wave height to reduce the redundant information input into the BiLSTM network.Meanwhile,the BiLSTM model is applied to fully extract the features of the associated information of time series data.Besides,the attention mechanism is used to assign probability weight to the output information of the BiLSTM layer units,and finally,a training model is constructed.Up to 24-h prediction experiments are conducted under normal and extreme conditions,respectively.Under the normal wave condition,for 3-,6-,12-and 24-h forecasting,the mean values of the correlation coefficients on the test set are 0.996,0.991,0.980,and 0.945,respectively.The corresponding mean values of the root mean square errors are measured at 0.063 m,0.105 m,0.172 m,and 0.281 m,respectively.Under the typhoon-forced extreme condition,the model based on CNN-BiLSTM-Attention is trained by typhooninduced SWH extracted from the WW3 reanalysis data.For 3-,6-,12-and 24-h forecasting,the mean values of correlation coefficients on the test set are respectively 0.993,0.983,0.958,and 0.921,and the averaged root mean square errors are 0.159 m,0.257 m,0.437 m,and 0.555 m,respectively.The model performs better than that trained by all the WW3 reanalysis data.The result suggests that the proposed algorithm can be applied to the 2D wave forecast with higher accuracy and efficiency.展开更多
Stochastic dynamic programming (SDP) is extensively used in the optimization for long-term reservoir operations. Generally, both of the steady state optimal policy and its associated performance indices (PIs) for mult...Stochastic dynamic programming (SDP) is extensively used in the optimization for long-term reservoir operations. Generally, both of the steady state optimal policy and its associated performance indices (PIs) for multipurpose reservoir are of prime importance. To derive the PIs there are two typical ways: simulation and probability formula. Among the disadvantages, one is that these approaches require the pre-specified operation policy. IHuminated by the convergence of objective function in SDP, a new approach, which has the advantage that its use can be concomitant with the solving of SDP, is proposed to determine the desired PIs. In the case study, its efficiency is also practically tested.展开更多
An efficient and accurate numerical method, which is called the CONV method, was proposed by Lord et al in [1] to price Bermudan options. In this paper, this method is applied to price Bermudan barrier options in whic...An efficient and accurate numerical method, which is called the CONV method, was proposed by Lord et al in [1] to price Bermudan options. In this paper, this method is applied to price Bermudan barrier options in which the monitored dates may be many times more than the exercise dates. The corresponding algorithm is presented to practical option pricing. Numerical experiments show that this algorithm works very well for different exponential Lévy asset models.展开更多
People who have trouble communicating verbally are often dependent on sign language,which can be difficult for most people to understand,making interaction with them a difficult endeavor.The Sign Language Recognition(...People who have trouble communicating verbally are often dependent on sign language,which can be difficult for most people to understand,making interaction with them a difficult endeavor.The Sign Language Recognition(SLR)system takes an input expression from a hearing or speaking-impaired person and outputs it in the form of text or voice to a normal person.The existing study related to the Sign Language Recognition system has some drawbacks,such as a lack of large datasets and datasets with a range of backgrounds,skin tones,and ages.This research efficiently focuses on Sign Language Recognition to overcome previous limitations.Most importantly,we use our proposed Convolutional Neural Network(CNN)model,“ConvNeural”,in order to train our dataset.Additionally,we develop our own datasets,“BdSL_OPSA22_STATIC1”and“BdSL_OPSA22_STATIC2”,both of which have ambiguous backgrounds.“BdSL_OPSA22_STATIC1”and“BdSL_OPSA22_STATIC2”both include images of Bangla characters and numerals,a total of 24,615 and 8437 images,respectively.The“ConvNeural”model outperforms the pre-trained models with accuracy of 98.38%for“BdSL_OPSA22_STATIC1”and 92.78%for“BdSL_OPSA22_STATIC2”.For“BdSL_OPSA22_STATIC1”dataset,we get precision,recall,F1-score,sensitivity and specificity of 96%,95%,95%,99.31%,and 95.78%respectively.Moreover,in case of“BdSL_OPSA22_STATIC2”dataset,we achieve precision,recall,F1-score,sensitivity and specificity of 90%,88%,88%,100%,and 100%respectively.展开更多
Blind image deblurring is a long-standing ill-posed inverse problem which aims to recover a latent sharp image given only a blurry observation.So far,existing studies have designed many effective priors w.r.t.the late...Blind image deblurring is a long-standing ill-posed inverse problem which aims to recover a latent sharp image given only a blurry observation.So far,existing studies have designed many effective priors w.r.t.the latent image within the maximum a posteriori(MAP)framework in order to narrow down the solution space.These non-convex priors are always integrated into the final deblurring model,which makes the optimization challenging.However,due to unknown image distribution,complex kernel structure and non-uniform noises in real-world scenarios,it is indeed challenging to explicitly design a fixed prior for all cases.Thus we adopt the idea of adaptive optimization and propose the sparse structure control(SSC)for the latent image during the optimization process.In this paper,we only formulate the necessary optiinization constraints in a lightweight MAP model with no priors.Then we develop an inexact projected gradient scheme to incorporate flexible SSC in MAP inference.Besides Zp-norm based SSC in our previous work,we also train a group of denoising convolutional neural networks(CNNs)to learn the sparse image structure automatically from the training data under different noise levels,and we show that CNNs-based SSC can achieve similar results compared with Zp-norm but are more robust to noise.Extensive experiments demonstrate that the proposed adaptive optimization scheme with two types of SSC achieves the state-of-the-art results on both synthetic data and real-world images.展开更多
文摘基于生成对抗网络中的循环一致性原则,提出了一个基于循环一致性损失的知识图谱嵌入模型。该模型首先使用ConvE模型利用头实体和关系构造的“图片”对尾实体进行预测,再利用尾实体和关系构造的“逆图片”对头实体进行预测。同时根据循环一致性原理,构造了ConvE模型的一个新的损失函数,解决了网络的可逆性。在WN18、FB15k以及YAGO3-10三个数据集上设计实验,证明了模型有效地缩短了头实体和原头实体的语义空间距离。Based on the cyclic consistency principle in generative adversarial networks, a knowledge graph embedding model based on cyclic consistency loss is proposed. Firstly, the ConvE model is used to predict the tail entity by using the “picture” constructed by the head entity and the relationship, and then the “inverse picture” constructed by the tail entity and the relationship is used to predict the head entity. According to the principle of cyclic consistency, a new loss function of ConvE model is constructed to solve the reversibility of the network. Experiments are designed on WN18, FB15k and YAGO3-10 data sets, and it is proved that the model can effectively shorten the semantic space distance between the header entity and the original header entity.
文摘The indirect use of language is a common,widespread phenomenon in daily linguistic communication,with an aim to keep a harmonious interpersonal relationship.Though indirectness manifests itself in many ways,this paper is to discuss the four different forms of indirectness in people's daily communications with typical examples found in both Chinese and English:politeness,indirect speech acts,conversational implicature and figures of speech.
基金This study is supported by the project supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(SML2020SP007)the National Natural Science Foundation of China(Nos.61772280 and 62072249).
文摘Though numerical wave models have been applied widely to significant wave height prediction,they consume massive computing memory and their accuracy needs to be further improved.In this paper,a two-dimensional(2D)significant wave height(SWH)prediction model is established for the South and East China Seas.The proposed model is trained by Wave Watch III(WW3)reanalysis data based on a convolutional neural network,the bidirectional long short-term memory and the attention mechanism(CNNBiLSTM-Attention).It adopts the convolutional neural network to extract spatial features of original wave height to reduce the redundant information input into the BiLSTM network.Meanwhile,the BiLSTM model is applied to fully extract the features of the associated information of time series data.Besides,the attention mechanism is used to assign probability weight to the output information of the BiLSTM layer units,and finally,a training model is constructed.Up to 24-h prediction experiments are conducted under normal and extreme conditions,respectively.Under the normal wave condition,for 3-,6-,12-and 24-h forecasting,the mean values of the correlation coefficients on the test set are 0.996,0.991,0.980,and 0.945,respectively.The corresponding mean values of the root mean square errors are measured at 0.063 m,0.105 m,0.172 m,and 0.281 m,respectively.Under the typhoon-forced extreme condition,the model based on CNN-BiLSTM-Attention is trained by typhooninduced SWH extracted from the WW3 reanalysis data.For 3-,6-,12-and 24-h forecasting,the mean values of correlation coefficients on the test set are respectively 0.993,0.983,0.958,and 0.921,and the averaged root mean square errors are 0.159 m,0.257 m,0.437 m,and 0.555 m,respectively.The model performs better than that trained by all the WW3 reanalysis data.The result suggests that the proposed algorithm can be applied to the 2D wave forecast with higher accuracy and efficiency.
基金Yunnan Natural Science Foundation under contract 98E004Z
文摘Stochastic dynamic programming (SDP) is extensively used in the optimization for long-term reservoir operations. Generally, both of the steady state optimal policy and its associated performance indices (PIs) for multipurpose reservoir are of prime importance. To derive the PIs there are two typical ways: simulation and probability formula. Among the disadvantages, one is that these approaches require the pre-specified operation policy. IHuminated by the convergence of objective function in SDP, a new approach, which has the advantage that its use can be concomitant with the solving of SDP, is proposed to determine the desired PIs. In the case study, its efficiency is also practically tested.
文摘An efficient and accurate numerical method, which is called the CONV method, was proposed by Lord et al in [1] to price Bermudan options. In this paper, this method is applied to price Bermudan barrier options in which the monitored dates may be many times more than the exercise dates. The corresponding algorithm is presented to practical option pricing. Numerical experiments show that this algorithm works very well for different exponential Lévy asset models.
文摘People who have trouble communicating verbally are often dependent on sign language,which can be difficult for most people to understand,making interaction with them a difficult endeavor.The Sign Language Recognition(SLR)system takes an input expression from a hearing or speaking-impaired person and outputs it in the form of text or voice to a normal person.The existing study related to the Sign Language Recognition system has some drawbacks,such as a lack of large datasets and datasets with a range of backgrounds,skin tones,and ages.This research efficiently focuses on Sign Language Recognition to overcome previous limitations.Most importantly,we use our proposed Convolutional Neural Network(CNN)model,“ConvNeural”,in order to train our dataset.Additionally,we develop our own datasets,“BdSL_OPSA22_STATIC1”and“BdSL_OPSA22_STATIC2”,both of which have ambiguous backgrounds.“BdSL_OPSA22_STATIC1”and“BdSL_OPSA22_STATIC2”both include images of Bangla characters and numerals,a total of 24,615 and 8437 images,respectively.The“ConvNeural”model outperforms the pre-trained models with accuracy of 98.38%for“BdSL_OPSA22_STATIC1”and 92.78%for“BdSL_OPSA22_STATIC2”.For“BdSL_OPSA22_STATIC1”dataset,we get precision,recall,F1-score,sensitivity and specificity of 96%,95%,95%,99.31%,and 95.78%respectively.Moreover,in case of“BdSL_OPSA22_STATIC2”dataset,we achieve precision,recall,F1-score,sensitivity and specificity of 90%,88%,88%,100%,and 100%respectively.
基金the National Natural Science Foundation of China under Grant Nos.61672125 and 61772108.
文摘Blind image deblurring is a long-standing ill-posed inverse problem which aims to recover a latent sharp image given only a blurry observation.So far,existing studies have designed many effective priors w.r.t.the latent image within the maximum a posteriori(MAP)framework in order to narrow down the solution space.These non-convex priors are always integrated into the final deblurring model,which makes the optimization challenging.However,due to unknown image distribution,complex kernel structure and non-uniform noises in real-world scenarios,it is indeed challenging to explicitly design a fixed prior for all cases.Thus we adopt the idea of adaptive optimization and propose the sparse structure control(SSC)for the latent image during the optimization process.In this paper,we only formulate the necessary optiinization constraints in a lightweight MAP model with no priors.Then we develop an inexact projected gradient scheme to incorporate flexible SSC in MAP inference.Besides Zp-norm based SSC in our previous work,we also train a group of denoising convolutional neural networks(CNNs)to learn the sparse image structure automatically from the training data under different noise levels,and we show that CNNs-based SSC can achieve similar results compared with Zp-norm but are more robust to noise.Extensive experiments demonstrate that the proposed adaptive optimization scheme with two types of SSC achieves the state-of-the-art results on both synthetic data and real-world images.