期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
基于循环一致性损失的知识图谱嵌入的研究
1
作者 李迦龙 郭中华 蔺金元 《人工智能与机器人研究》 2024年第4期822-836,共15页
基于生成对抗网络中的循环一致性原则,提出了一个基于循环一致性损失的知识图谱嵌入模型。该模型首先使用ConvE模型利用头实体和关系构造的“图片”对尾实体进行预测,再利用尾实体和关系构造的“逆图片”对头实体进行预测。同时根据循... 基于生成对抗网络中的循环一致性原则,提出了一个基于循环一致性损失的知识图谱嵌入模型。该模型首先使用ConvE模型利用头实体和关系构造的“图片”对尾实体进行预测,再利用尾实体和关系构造的“逆图片”对头实体进行预测。同时根据循环一致性原理,构造了ConvE模型的一个新的损失函数,解决了网络的可逆性。在WN18、FB15k以及YAGO3-10三个数据集上设计实验,证明了模型有效地缩短了头实体和原头实体的语义空间距离。Based on the cyclic consistency principle in generative adversarial networks, a knowledge graph embedding model based on cyclic consistency loss is proposed. Firstly, the ConvE model is used to predict the tail entity by using the “picture” constructed by the head entity and the relationship, and then the “inverse picture” constructed by the tail entity and the relationship is used to predict the head entity. According to the principle of cyclic consistency, a new loss function of ConvE model is constructed to solve the reversibility of the network. Experiments are designed on WN18, FB15k and YAGO3-10 data sets, and it is proved that the model can effectively shorten the semantic space distance between the header entity and the original header entity. 展开更多
关键词 知识图谱 TransE conve 循环一致性
下载PDF
卷积神经网络方法在涌潮水动力特性演变中的应用研究
2
作者 王智弘 屈科 +2 位作者 杨元平 王旭 高榕泽 《海洋学研究》 CSCD 北大核心 2024年第3期131-141,共11页
该文基于开源软件OpenFOAM求解雷诺平均的Navier-Stokes方程,实现了对于波状涌潮(Fr=1.2~1.3)的数值模拟,并与物理实验数据比较,验证了数值模拟的准确性。使用CONV1D卷积神经网络模型对数值模拟数据进行了学习,预测出在具有斜坡地形上... 该文基于开源软件OpenFOAM求解雷诺平均的Navier-Stokes方程,实现了对于波状涌潮(Fr=1.2~1.3)的数值模拟,并与物理实验数据比较,验证了数值模拟的准确性。使用CONV1D卷积神经网络模型对数值模拟数据进行了学习,预测出在具有斜坡地形上的涌潮水动力发展过程。对比涌潮到达x=30.0 m测点处的用时和该测点的最高水位的模型预测结果与数值模拟结果可知:到达用时的平均相对误差为2.28%,最高水位的平均相对误差为3.73%。较小的相对误差证明了CONV1D模型的准确性。该文对于涌潮的水动力过程模拟、与涌潮相关的灾害预警以及初生涌潮未来发展趋势研究都具有一定意义。 展开更多
关键词 涌潮 钱塘江 OPENFOAM 水动力过程 斜坡地形 卷积神经网络 CONV1D 数值模拟
下载PDF
基于Conv1D-LSTM混合模型的长时间序列日最高温预测研究
3
作者 杜智勇 杨帆 杨文杰 《北京印刷学院学报》 2024年第9期52-57,共6页
针对传统方法难以处理高维度数据捕捉气温数据中的非线性模式和复杂动态特征的问题,本文提出一种基于卷积神经网络(Conv1D)与长短期记忆网络(LSTM)相结合的混合模型,用于长时间序列高温预测研究。数据集包含北京市2014年至2023年间的气... 针对传统方法难以处理高维度数据捕捉气温数据中的非线性模式和复杂动态特征的问题,本文提出一种基于卷积神经网络(Conv1D)与长短期记忆网络(LSTM)相结合的混合模型,用于长时间序列高温预测研究。数据集包含北京市2014年至2023年间的气象数据,包括天气、日最低温、日最高温、风向等特征。通过特征工程处理,将天气和风向特征编码,并对温度特征归一化。构建的Conv1D-LSTM混合模型创新性地融合Conv1D以捕获时间序列中的局部特征,融合LSTM以学习长期依赖关系。与传统模型相比,该混合模型的均方根误差(RMSE)和平均绝对误差(MAE)分别降低约17.3%和20.5%,同时R2分数提高约1.06%,表明该模型具有更高的预测精度和泛化能力。 展开更多
关键词 日最高温预测 Conv1D-LSTM混合模型 长时间序列 预测精度
下载PDF
深度视频修复篡改的被动取证研究
4
作者 熊义毛 丁湘陵 +2 位作者 谷庆 杨高波 赵险峰 《信息安全学报》 CSCD 2024年第4期125-138,共14页
深度视频修复技术就是利用深度学习技术,对视频中的缺失区域进行补全或移除特定目标对象。它也可用于合成篡改视频,其篡改后的视频很难通过肉眼辨别真假,尤其是一些恶意修复的视频在社交媒体上传播时,容易造成负面的社会舆论。目前,针... 深度视频修复技术就是利用深度学习技术,对视频中的缺失区域进行补全或移除特定目标对象。它也可用于合成篡改视频,其篡改后的视频很难通过肉眼辨别真假,尤其是一些恶意修复的视频在社交媒体上传播时,容易造成负面的社会舆论。目前,针对深度视频修复篡改的被动检测技术起步较晚,尽管它已经得到一些关注,但在研究的深度和广度上还远远不够。因此,本文提出一种基于级联Conv GRU和八方向局部注意力的被动取证技术,从时空域角度实现对深度修复篡改区域的定位检测。首先,为了提取修复区域的更多特征,RGB帧和错误级分析帧ELA平行输入编码器中,通过通道特征级融合,生成不同尺度的多模态特征。其次,在解码器部分,使用编码器生成的多尺度特征与串联的Conv GRU进行通道级融合来捕捉视频帧间的时域不连续性。最后,在编码器的最后一级RGB特征后,引入八方向局部注意力模块,该模块通过八个方向来关注像素的邻域信息,捕捉修复区域像素间的异常。实验中,本文使用了VI、OP、DSTT和FGVC四种最新的深度视频修复方法与已有的深度视频修复篡改检测方法HPF和VIDNet进行了对比,性能优于HPF且在编码器参数仅VIDNet的五分之一的情况下获得与VIDNet可比的性能。结果表明,本文所提方法利用多尺度双模态特征和引入的八方向局部注意力模块来关注像素间的相关性,使用Conv GRU捕捉时域异常,实现像素级的篡改区域定位,获得精准的定位效果。 展开更多
关键词 深度视频修复 视频篡改检测 级联Conv GRU 局部注意力模块 空时预测
下载PDF
基于改进YOLOv7网络的织物疵点检测
5
作者 石玉文 林富生 +1 位作者 宋志峰 余联庆 《毛纺科技》 CAS 北大核心 2024年第8期103-110,共8页
针对传统的目标检测方法不能平衡检测精度、预测速度和轻量级部署模型、实时疵点检测,提出一种改进YOLOv7网络的轻量化检测模型。首先在主干网络引入轻量级卷积Ghost conv,在保证检测精度的同时降低网络参数量,提高对织物疵点的检测效率... 针对传统的目标检测方法不能平衡检测精度、预测速度和轻量级部署模型、实时疵点检测,提出一种改进YOLOv7网络的轻量化检测模型。首先在主干网络引入轻量级卷积Ghost conv,在保证检测精度的同时降低网络参数量,提高对织物疵点的检测效率;其次添加CBAM注意力机制抑制无用信息,增强特征提取能力;最后在回归损失函数处引入新度量方法α-SIoU替换IoU,加速损失函数的自由度,提高网络模型的精确度。实验表明:该检测模型的准确率P达到96.27%,平均精度mAP值为83.84%,模型大小仅为19.10 MB,有效平衡了疵点检测的准确性、实时性与轻量级部署的问题。 展开更多
关键词 疵点检测 YOLOv7 轻量化 CBAM注意力机制 Ghost conv卷积 α-SIoU
下载PDF
基于CGS-Ghost YOLO的交通标志检测研究 被引量:6
6
作者 赵宏 冯宇博 《计算机工程》 CAS CSCD 北大核心 2023年第12期194-204,共11页
在交通标志检测任务中,YOLOv5检测算法在复杂的环境和路况下存在漏检、错检及模型参数量过大等问题。为此,提出一种改进的CGS-Ghost YOLO检测模型。YOLOv5在图片输入后使用Focus模块进行下采样,增加较多参数,CGS-Ghost YOLO模型使用Stem... 在交通标志检测任务中,YOLOv5检测算法在复杂的环境和路况下存在漏检、错检及模型参数量过大等问题。为此,提出一种改进的CGS-Ghost YOLO检测模型。YOLOv5在图片输入后使用Focus模块进行下采样,增加较多参数,CGS-Ghost YOLO模型使用StemBlock模块替换Focus模块进行采样,能够在维持精度的同时减少参数,并通过引入坐标注意力机制,强化特征中的语义信息和位置信息,提高模型的特征提取能力。设计SMU激活函数与组归一化相结合的CGS卷积模块,避免训练过程中Batch Size大小对模型所造成的影响,在使用GhostConv减少模型参数的同时,提升模型的检测精度。在此基础上,通过α-CIoU Loss+VFocal Loss损失函数,改善交通标志检测任务中正负样本不平衡的问题,提升模型整体性能,Neck部分使用Bi-FPN双向特征金字塔网络,实现检测目标多尺度特征的有效融合。实验结果表明,改进的CGS-Ghost YOLO模型在交通标志检测数据集TT100K中的平均精度均值达到93.1%,相较于原始模型提高了11.3个百分点,模型参数量相较于原始模型降低了21.2个百分点。此外,该网络模型优化了卷积层及下采样部分,在大幅减少模型参数的同时提高了模型检测精度。 展开更多
关键词 深度学习 目标检测 YOLOv5检测算法 注意力机制 CGS Conv模块
下载PDF
The Analysis of the Four Forms of Indirectness in Daily Communications
7
作者 叶红 《海外英语》 2012年第23期261-262,共2页
The indirect use of language is a common,widespread phenomenon in daily linguistic communication,with an aim to keep a harmonious interpersonal relationship.Though indirectness manifests itself in many ways,this paper... The indirect use of language is a common,widespread phenomenon in daily linguistic communication,with an aim to keep a harmonious interpersonal relationship.Though indirectness manifests itself in many ways,this paper is to discuss the four different forms of indirectness in people's daily communications with typical examples found in both Chinese and English:politeness,indirect speech acts,conversational implicature and figures of speech. 展开更多
关键词 INDIRECTNESS POLITENESS indirect SPEECH ACTS conve
下载PDF
百变星君多功能一体机——三星蓝调i7数码相机
8
作者 吉祥朵朵 《大众数码》 2007年第8期49-49,共1页
IT企业里面精于琢磨消费潮流的非三星莫属,无论是手机还是相机,都引领着时尚潮流,作为重量级产品,蓝调i7创造性的娱乐设计让它散发着独特的魅力。
关键词 I7 多功能一体机 蓝调 消费潮流 拍摄功能 重量级产品 光学变焦 时尚潮流 媒体播放器 conve
下载PDF
基于g^(n)Conv和GAM的YOLOv5钢管焊接缺陷检测方法 被引量:3
9
作者 周鑫 郝万君 +1 位作者 卞长庚 马文琪 《微电子学与计算机》 2023年第9期29-37,共9页
针对基础yolov5算法检测钢管焊缝缺陷因缺陷目标小、背景复杂造成检测精度不够、特征提取不充分、速度慢的问题,提出了一种改进yolov5检测算法.首先,采用递归门控卷积g^(n)Conv替换网络中普通的卷积层,增强了模型空间交互能力,实现对特... 针对基础yolov5算法检测钢管焊缝缺陷因缺陷目标小、背景复杂造成检测精度不够、特征提取不充分、速度慢的问题,提出了一种改进yolov5检测算法.首先,采用递归门控卷积g^(n)Conv替换网络中普通的卷积层,增强了模型空间交互能力,实现对特征的高效提取,间接提高了检测速度;其次,使用ASPP(Atrous Spatial Pyramid Pooling)模块替换基础算法中使用的SPP模块,在扩大了感受野范围的同时提高了检测速度;最后,在网络的预测端添加全局注意力机制GAM(Global Attention Mechanism)进一步加强特征提取,提高检测的精度.实验结果表明,改进的算法mAP达到了92.7%,比原算法提升了2.1个百分点,速度为50.8 f/s,满足钢管焊接缺陷检测的精度和实时性要求. 展开更多
关键词 钢管焊接缺陷 g^(n)Conv ASPP GAM
下载PDF
CNN-BiLSTM-Attention Model in Forecasting Wave Height over South-East China Seas 被引量:2
10
作者 Lina Wang Xilin Deng +4 位作者 Peng Ge Changming Dong Brandon J.Bethel Leqing Yang Jinyue Xia 《Computers, Materials & Continua》 SCIE EI 2022年第10期2151-2168,共18页
Though numerical wave models have been applied widely to significant wave height prediction,they consume massive computing memory and their accuracy needs to be further improved.In this paper,a two-dimensional(2D)sign... Though numerical wave models have been applied widely to significant wave height prediction,they consume massive computing memory and their accuracy needs to be further improved.In this paper,a two-dimensional(2D)significant wave height(SWH)prediction model is established for the South and East China Seas.The proposed model is trained by Wave Watch III(WW3)reanalysis data based on a convolutional neural network,the bidirectional long short-term memory and the attention mechanism(CNNBiLSTM-Attention).It adopts the convolutional neural network to extract spatial features of original wave height to reduce the redundant information input into the BiLSTM network.Meanwhile,the BiLSTM model is applied to fully extract the features of the associated information of time series data.Besides,the attention mechanism is used to assign probability weight to the output information of the BiLSTM layer units,and finally,a training model is constructed.Up to 24-h prediction experiments are conducted under normal and extreme conditions,respectively.Under the normal wave condition,for 3-,6-,12-and 24-h forecasting,the mean values of the correlation coefficients on the test set are 0.996,0.991,0.980,and 0.945,respectively.The corresponding mean values of the root mean square errors are measured at 0.063 m,0.105 m,0.172 m,and 0.281 m,respectively.Under the typhoon-forced extreme condition,the model based on CNN-BiLSTM-Attention is trained by typhooninduced SWH extracted from the WW3 reanalysis data.For 3-,6-,12-and 24-h forecasting,the mean values of correlation coefficients on the test set are respectively 0.993,0.983,0.958,and 0.921,and the averaged root mean square errors are 0.159 m,0.257 m,0.437 m,and 0.555 m,respectively.The model performs better than that trained by all the WW3 reanalysis data.The result suggests that the proposed algorithm can be applied to the 2D wave forecast with higher accuracy and efficiency. 展开更多
关键词 Conv2D CNN-BiLSTM-Attention wave forecasting significant wave height TYPHOON
下载PDF
面向ADS-B信号辐射源个体识别的轻量化模型设计
11
作者 王艺卉 闫文君 +4 位作者 徐从安 查浩然 桂冠 陈雪梅 葛亮 《太赫兹科学与电子信息学报》 2023年第9期1100-1108,共9页
针对辐射源个体识别高精确度、轻量化、实时性的现实应用需求,提出了面向广播式自动相关监测(ADS-B)信号辐射源个体识别的轻量化模型设计方法。根据信号数据特点进行解码处理,并对不均衡样本进行权重调节,改善样本质量;通过分组卷积获... 针对辐射源个体识别高精确度、轻量化、实时性的现实应用需求,提出了面向广播式自动相关监测(ADS-B)信号辐射源个体识别的轻量化模型设计方法。根据信号数据特点进行解码处理,并对不均衡样本进行权重调节,改善样本质量;通过分组卷积获取不同维度的细微特征,与初始特征拼接,实现多维互补特征融合,并联同步进行提高识别效率。利用Ghost bottleneck结构实现网络模型压缩与跨层连接,在融合多维特征的同时节省计算资源。实验结果表明,本文算法结构精简,计算量低,识别率达到95.2%,并在不同容量的样本识别中效果稳定。本文算法较好地平衡了辐射源个体识别精确度、轻量化与高时效的需求。 展开更多
关键词 辐射源个体识别 Conv2D层 Ghost bottleneck结构 轻量化设计
下载PDF
基于Conv1D和LSTM组合模型的多步交通流量预测分析 被引量:1
12
作者 赵晓娟 李峰 《微型电脑应用》 2023年第5期1-3,共3页
为了提高交通流预测精度,设计一种Conv1D和LSTM相结合的多步交通流预测模型。用Conv1D获取交通流的时间与周期参数,并测试各外部因素引起的交通流量变化,再利用LSTM序列分析模型,根据上述交通流特征进行预测。研究结果表明:在加入时间... 为了提高交通流预测精度,设计一种Conv1D和LSTM相结合的多步交通流预测模型。用Conv1D获取交通流的时间与周期参数,并测试各外部因素引起的交通流量变化,再利用LSTM序列分析模型,根据上述交通流特征进行预测。研究结果表明:在加入时间信息的条件下,交通流量预测结果与实际结果间存在更大相似度,考虑时间信息影响能够获得更准确的预测结果。经过外部因素提取处理后可以获得更高精度交通流预测结果,采用Conv1D+LSTM模型可以达到比LSTM更高的精度。 展开更多
关键词 一维卷积神经网络(Conv1D) 长短期记忆神经网络(LSTM) 交通流量 预测
下载PDF
基于深度学习的头盔佩戴自动检测 被引量:2
13
作者 张传金 李燕林 +1 位作者 张永义 王扩 《电脑编程技巧与维护》 2019年第8期126-130,共5页
为加强巡检人员安全,基于深度学习算法,设计了一种头盔佩戴自动检测方法。在SSD300模型的基础上,使用数据增强技术,通过卷积层conv4_3进行检测,以增强对较小目标的识别精度;采用{1/2,2}和{1/3,3}的边框,通过适当调节边框提高检测效果;以... 为加强巡检人员安全,基于深度学习算法,设计了一种头盔佩戴自动检测方法。在SSD300模型的基础上,使用数据增强技术,通过卷积层conv4_3进行检测,以增强对较小目标的识别精度;采用{1/2,2}和{1/3,3}的边框,通过适当调节边框提高检测效果;以VGG16作为基础网络,使用atrous卷积,进一步改善识别精度。将训练模型移植到CR1030P-YT便携式安卓智能通信系统,并与在服务器GPU、CPU上的检测结果和检测速率进行对比。实验结果表明,CR1030P-YT平台上的头盔佩戴检测结果与服务器一致,检测精度高达95%以上,且检测不受环境和地点的约束;服务器GPU上的头盔佩戴检测速率高达34 fps,能够满足工业实时性需要,但CR1030P-YT平台上的检测速率还有待提升。 展开更多
关键词 头盔佩戴检测 深度学习 SSD300模型 CR1030P-YT便携式安卓智能通信系统 卷积层conv4_3 atrous卷积
下载PDF
New Procedure to Derive the Performance Indices Associated with Reservoir Operation Rule
14
作者 王金文 张勇传 张友权 《Journal of Donghua University(English Edition)》 EI CAS 2002年第4期111-114,共4页
Stochastic dynamic programming (SDP) is extensively used in the optimization for long-term reservoir operations. Generally, both of the steady state optimal policy and its associated performance indices (PIs) for mult... Stochastic dynamic programming (SDP) is extensively used in the optimization for long-term reservoir operations. Generally, both of the steady state optimal policy and its associated performance indices (PIs) for multipurpose reservoir are of prime importance. To derive the PIs there are two typical ways: simulation and probability formula. Among the disadvantages, one is that these approaches require the pre-specified operation policy. IHuminated by the convergence of objective function in SDP, a new approach, which has the advantage that its use can be concomitant with the solving of SDP, is proposed to determine the desired PIs. In the case study, its efficiency is also practically tested. 展开更多
关键词 DYNAMIC conv ergence performance index stochastic DYNAMIC programming RESERVOIR operation Markovian characteristic.
下载PDF
考虑航班计划的机场短时停车需求预测
15
作者 樊博 刘洋 李怡凡 《科学技术与工程》 北大核心 2022年第32期14465-14470,共6页
为克服现有短时停车需求模型无法直接利用于机场停车需求预测这一问题,利用停车数据、航班计划和气象信息,建立了面向机场停车场的短时停车需求预测模型。首先使用机场停车数据分析了停车场短时车辆到达与离去特性,然后考虑到航班计划... 为克服现有短时停车需求模型无法直接利用于机场停车需求预测这一问题,利用停车数据、航班计划和气象信息,建立了面向机场停车场的短时停车需求预测模型。首先使用机场停车数据分析了停车场短时车辆到达与离去特性,然后考虑到航班计划对机场停车场短时停车需求的影响,将其与气象状况同时引入短时停车需求影响因素中,建立了基于Conv1 D-长短期记忆(long short-term memory,LSTM)神经网络结构的机场短时停车需求模型。以上海虹桥机场停车场为实例,Conv1 D-LSTM模型实验结果的平均绝对误差和均方根误差分别为12.057辆和14.237辆;对比多个其他模型实验结果,所构建的Conv1 D-LSTM模型预测效果更优,能有效应用于机场停车场短时停车需求预测。 展开更多
关键词 交通工程 短时停车需求 机场停车场 航班计划 Conv1D-长短期记忆(LSTM)模型
下载PDF
An Accurate FFT-Based Algorithm for Bermudan Barrier Option Pricing
16
作者 Deng Ding Zuoqiu Weng Jingya Zhao 《Intelligent Information Management》 2012年第3期89-93,共5页
An efficient and accurate numerical method, which is called the CONV method, was proposed by Lord et al in [1] to price Bermudan options. In this paper, this method is applied to price Bermudan barrier options in whic... An efficient and accurate numerical method, which is called the CONV method, was proposed by Lord et al in [1] to price Bermudan options. In this paper, this method is applied to price Bermudan barrier options in which the monitored dates may be many times more than the exercise dates. The corresponding algorithm is presented to practical option pricing. Numerical experiments show that this algorithm works very well for different exponential Lévy asset models. 展开更多
关键词 Fast FOURIER TRANSFORM (FFT) Bermudan BARRIER OPTION CONV Method.
下载PDF
Computer vision-based six layered ConvNeural network to recognize sign language for both numeral and alphabet signs 被引量:1
17
作者 Muhammad Aminur Rahaman Kabiratun Ummi Oyshe +3 位作者 Prothoma Khan Chowdhury Tanoy Debnath Anichur Rahman Md.Saikat Islam Khan 《Biomimetic Intelligence & Robotics》 EI 2024年第1期45-58,共14页
People who have trouble communicating verbally are often dependent on sign language,which can be difficult for most people to understand,making interaction with them a difficult endeavor.The Sign Language Recognition(... People who have trouble communicating verbally are often dependent on sign language,which can be difficult for most people to understand,making interaction with them a difficult endeavor.The Sign Language Recognition(SLR)system takes an input expression from a hearing or speaking-impaired person and outputs it in the form of text or voice to a normal person.The existing study related to the Sign Language Recognition system has some drawbacks,such as a lack of large datasets and datasets with a range of backgrounds,skin tones,and ages.This research efficiently focuses on Sign Language Recognition to overcome previous limitations.Most importantly,we use our proposed Convolutional Neural Network(CNN)model,“ConvNeural”,in order to train our dataset.Additionally,we develop our own datasets,“BdSL_OPSA22_STATIC1”and“BdSL_OPSA22_STATIC2”,both of which have ambiguous backgrounds.“BdSL_OPSA22_STATIC1”and“BdSL_OPSA22_STATIC2”both include images of Bangla characters and numerals,a total of 24,615 and 8437 images,respectively.The“ConvNeural”model outperforms the pre-trained models with accuracy of 98.38%for“BdSL_OPSA22_STATIC1”and 92.78%for“BdSL_OPSA22_STATIC2”.For“BdSL_OPSA22_STATIC1”dataset,we get precision,recall,F1-score,sensitivity and specificity of 96%,95%,95%,99.31%,and 95.78%respectively.Moreover,in case of“BdSL_OPSA22_STATIC2”dataset,we achieve precision,recall,F1-score,sensitivity and specificity of 90%,88%,88%,100%,and 100%respectively. 展开更多
关键词 Conv NeuralSign language CNN Static Feature extraction Convolution2D Fully connected layer DROPOUT
原文传递
Blind Image Deblurring via Adaptive Optimization with Flexible Sparse St rue ture Control
18
作者 Ri-Sheng Liu Cai-Sheng Mao +1 位作者 Zhi-Hui Wang Hao-Jie Li 《Journal of Computer Science & Technology》 SCIE EI CSCD 2019年第3期609-621,共13页
Blind image deblurring is a long-standing ill-posed inverse problem which aims to recover a latent sharp image given only a blurry observation.So far,existing studies have designed many effective priors w.r.t.the late... Blind image deblurring is a long-standing ill-posed inverse problem which aims to recover a latent sharp image given only a blurry observation.So far,existing studies have designed many effective priors w.r.t.the latent image within the maximum a posteriori(MAP)framework in order to narrow down the solution space.These non-convex priors are always integrated into the final deblurring model,which makes the optimization challenging.However,due to unknown image distribution,complex kernel structure and non-uniform noises in real-world scenarios,it is indeed challenging to explicitly design a fixed prior for all cases.Thus we adopt the idea of adaptive optimization and propose the sparse structure control(SSC)for the latent image during the optimization process.In this paper,we only formulate the necessary optiinization constraints in a lightweight MAP model with no priors.Then we develop an inexact projected gradient scheme to incorporate flexible SSC in MAP inference.Besides Zp-norm based SSC in our previous work,we also train a group of denoising convolutional neural networks(CNNs)to learn the sparse image structure automatically from the training data under different noise levels,and we show that CNNs-based SSC can achieve similar results compared with Zp-norm but are more robust to noise.Extensive experiments demonstrate that the proposed adaptive optimization scheme with two types of SSC achieves the state-of-the-art results on both synthetic data and real-world images. 展开更多
关键词 BLIND image DEBLURRING conv olutio nal neural net work(CNN) non-convex optimization SPARSE structure control(SSC)
原文传递
如何优化电脑音响
19
作者 Simon Chung Benny Lau 《明日风尚》 2010年第5期124-125,14,共3页
你可有留意到,最近推出的音响组合,和从前的大不同——一般都支援USB记忆体或iPod播放;更有专门的一些内置有硬盘,或数字串流播放。渐渐消失的,是流行了四分之一个世纪的CD盘!简单描述这趋势,可称之为电脑音响年代的到来。
关键词 记忆体 串流 BENCHMARK 伺服器 CHORD 家居设计 网线 suppl 光学原理 Conv
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部