期刊文献+
共找到550篇文章
< 1 2 28 >
每页显示 20 50 100
THE FINITE DIFFERENCE STREAMLINE DIFFUSION METHODS FOR TIME-DEPENDENT CONVECTION-DIFFUSION EQUATIONS 被引量:6
1
作者 孙澈 沈慧 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1998年第1期72-85,共14页
In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for c... In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for considered schemes are derived in the norm stronger than L^2-norm. 展开更多
关键词 TIME-DEPENDENT convection-diffusion equations STREAMLINE diffusion methods Euler-FDSD SCHEME Crank-Nicolson-FDSD scheme.
下载PDF
Mixed time discontinuous space-time finite element method for convection diffusion equations 被引量:1
2
作者 刘洋 李宏 何斯日古楞 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第12期1579-1586,共8页
A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order... A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method. 展开更多
关键词 convection diffusion equations mixed finite element method time discontinuous space-time finite element method CONVERGENCE
下载PDF
Multidomain pseudospectral methods for nonlinear convection-diffusion equations 被引量:4
3
作者 纪园园 吴华 +1 位作者 马和平 郭本瑜 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第10期1255-1268,共14页
Multidomain pseudospectral approximations to nonlinear convection-diffusion equations are considered. The schemes are formulated with the Legendre-Galerkin method but the nonlinear term is collocated at the Legendre/C... Multidomain pseudospectral approximations to nonlinear convection-diffusion equations are considered. The schemes are formulated with the Legendre-Galerkin method but the nonlinear term is collocated at the Legendre/Chebyshev-Gauss-Lobatto points inside each subinterval. Appropriate base functions are introduced so that the matrix of the system is sparse, and the method can be implemented efficiently and in parallel. The stability and the optimal rate of convergence of the methods are proved. Numerical results are given for both the single domain and the multidomain methods to make a comparison. 展开更多
关键词 equation multidomain Legendre/Chebyshev collocation convection-diffusion
下载PDF
An Explicit-Implicit Predictor-Corrector Domain Decomposition Method for Time Dependent Multi-Dimensional Convection Diffusion Equations 被引量:1
4
作者 Liyong Zhu Guangwei Yuan Qiang Du 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2009年第3期301-325,共25页
The numerical solution of large scale multi-dimensional convection diffusion equations often requires efficient parallel algorithms.In this work,we consider the extension of a recently proposed non-overlapping domain ... The numerical solution of large scale multi-dimensional convection diffusion equations often requires efficient parallel algorithms.In this work,we consider the extension of a recently proposed non-overlapping domain decomposition method for two dimensional time dependent convection diffusion equations with variable coefficients. By combining predictor-corrector technique,modified upwind differences with explicitimplicit coupling,the method under consideration provides intrinsic parallelism while maintaining good stability and accuracy.Moreover,for multi-dimensional problems, the method can be readily implemented on a multi-processor system and does not have the limitation on the choice of subdomains required by some other similar predictor-corrector or stabilized schemes.These properties of the method are demonstrated in this work through both rigorous mathematical analysis and numerical experiments. 展开更多
关键词 convection diffusion equation parallel algorithm domain decomposition modifiedupwind differences PREDICTOR-CORRECTOR explicit-implicit scheme convergence analysis.
下载PDF
CHARACTERISTIC GALERKIN METHOD FOR CONVECTION-DIFFUSION EQUATIONS AND IMPLICIT ALGORITHM USING PRECISE INTEGRATION 被引量:3
5
作者 李锡夔 武文华 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1999年第4期371-382,共12页
This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using prec... This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using precise integration method. With the operator splitting procedure, the precise integration method is introduced to determine the material derivative in the convection-diffusion equation, consequently, the physical quantities of material points. An implicit algorithm with a combination of both the precise and the traditional numerical integration procedures in time domain in the Lagrange coordinates for the characteristic Galerkin method is formulated. The stability analysis of the algorithm shows that the unconditional stability of present implicit algorithm is enhanced as compared with that of the traditional implicit numerical integration procedure. The numerical results validate the presented method in solving convection-diffusion equations. As compared with SUPG method and explicit characteristic Galerkin method, the present method gives the results with higher accuracy and better stability. 展开更多
关键词 convection-diffusion equation characteristic Galerkin method finite element procedure precise integration implicit algorithm
下载PDF
Incremental Unknowns Method for Solving Three-Dimensional Convection-Diffusion Equations 被引量:1
6
作者 Lunji Song Yujiang Wu 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2007年第1期14-27,共14页
We use the incremental unknowns method in conjunction with the iterative methods to approximate the solution of the nonsymmetric and positive-definite linear systems generated from a multilevel discretization of three... We use the incremental unknowns method in conjunction with the iterative methods to approximate the solution of the nonsymmetric and positive-definite linear systems generated from a multilevel discretization of three-dimensional convection-diffusion equations. The condition numbers of incremental unknowns matrices associated with the convection-diffusion equations and the number of iterations needed to attain an acceptable accuracy are estimated. Numerical results are presented with two-level approximations, which demonstrate that the incremental unknowns method when combined with some iter- ative methods is very effcient. 展开更多
关键词 逻辑积 扩散方程 离散化 迭代法
下载PDF
Exponential B-Spline Solution of Convection-Diffusion Equations 被引量:1
7
作者 Reza Mohammadi 《Applied Mathematics》 2013年第6期933-944,共12页
We present an exponential B-spline collocation method for solving convection-diffusion equation with Dirichlet’s type boundary conditions. The method is based on the Crank-Nicolson formulation for time integration an... We present an exponential B-spline collocation method for solving convection-diffusion equation with Dirichlet’s type boundary conditions. The method is based on the Crank-Nicolson formulation for time integration and exponential B-spline functions for space integration. Using the Von Neumann method, the proposed method is shown to be unconditionally stable. Numerical experiments have been conducted to demonstrate the accuracy of the current algorithm with relatively minimal computational effort. The results showed that use of the present approach in the simulation is very applicable for the solution of convection-diffusion equation. The current results are also seen to be more accurate than some results given in the literature. The proposed algorithm is seen to be very good alternatives to existing approaches for such physical applications. 展开更多
关键词 EXPONENTIAL B-SPLINE convection-diffusion equation COLLOCATION CRANK-NICOLSON FORMULATION
下载PDF
UPWIND SPLITTING SCHEME FOR CONVECTION-DIFFUSION EQUATIONS
8
作者 梁栋 芮洪兴 程爱杰 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2000年第1期45-54,共10页
WT5,5”BX] A new class of numerical schemes is proposed to solve convection diffusion equations by combining the upwind technique and the method of operator splitting. For every time step, the multi dimensional approx... WT5,5”BX] A new class of numerical schemes is proposed to solve convection diffusion equations by combining the upwind technique and the method of operator splitting. For every time step, the multi dimensional approximation is performed in several independent directions alternatively, while the upwind technique is applied to treat the convection term in every individual direction. This scheme possesses maximum principle. Stability and convergence are analysed by energy method.[WT5,5”HZ] 展开更多
关键词 convection diffusion equationS UPWIND SPLITTING scheme maximum PRINCIPLE stability and CONVERGENCE .
下载PDF
A Nearly Analytic Discrete Method for One-dimensional Unsteady Convection-dominated Diffusion Equations
9
作者 KIM YON-CHOL YUN NAM CHAI DONG-HO 《Communications in Mathematical Research》 CSCD 2019年第3期193-207,共15页
In this paper, a nearly analytic discretization method for one-dimensional linear unsteady convection-dominated diffusion equations and viscous Burgers’ equation as one of the nonlinear equation is considered. In the... In this paper, a nearly analytic discretization method for one-dimensional linear unsteady convection-dominated diffusion equations and viscous Burgers’ equation as one of the nonlinear equation is considered. In the case of linear equations, we find the local truncation error of the scheme is O(τ 2 + h4) and consider the stability analysis of the method on the basis of the classical von Neumann’s theory. In addition, the nearly analytic discretization method for the one-dimensional viscous Burgers’ equation is also constructed. The numerical experiments are performed for several benchmark problems presented in some literatures to illustrate the theoretical results. Theoretical and numerical results show that our method is to be higher accurate and nonoscillatory and might be helpful particularly in computations for the unsteady convection-dominated diffusion problems. 展开更多
关键词 convection-dominated diffusion equation NEARLY ANALYTIC DISCRETIZATION method analysis of the stability
下载PDF
An approach for choosing discretization schemes and grid size based on the convection-diffusion equation
10
作者 Lin ZHOU Zhenghong GAO Yuan GAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第6期877-890,共14页
A new approach for selecting proper discretization schemes and grid size is presented. This method is based on the convection-diffusion equation and can provide insight for the Navier-Stokes equation. The approach mai... A new approach for selecting proper discretization schemes and grid size is presented. This method is based on the convection-diffusion equation and can provide insight for the Navier-Stokes equation. The approach mainly addresses two aspects, i.e., the practical accuracy of diffusion term discretization and the behavior of high wavenum- ber disturbances. Two criteria are included in this approach. First, numerical diffusion should not affect the theoretical diffusion accuracy near the length scales of interest. This is achieved by requiring numerical diffusion to be smaller than the diffusion discretization error. Second, high wavenumber modes that are.much smaller than the length scales of interest should not be amplified. These two criteria provide a range of suitable scheme combinations for convective flux and diffusive flux and an ideal interval for grid spacing. The effects of time discretization on these criteria are briefly discussed. 展开更多
关键词 convection-diffusion equation cell ReynOlds number diffusion term accu-racy high wavenumber mode scheme selection
下载PDF
H^1 space-time discontinuous finite element method for convection-diffusion equations
11
作者 何斯日古楞 李宏 刘洋 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第3期371-384,共14页
An H1 space-time discontinuous Galerkin (STDG) scheme for convection- diffusion equations in one spatial dimension is constructed and analyzed. This method is formulated by combining the H1 Galerkin method and the s... An H1 space-time discontinuous Galerkin (STDG) scheme for convection- diffusion equations in one spatial dimension is constructed and analyzed. This method is formulated by combining the H1 Galerkin method and the space-time discontinuous finite element method that is discontinuous in time and continuous in space. The existence and the uniqueness of the approximate solution are proved. The convergence of the scheme is analyzed by using the techniques in the finite difference and finite element methods. An optimal a-priori error estimate in the L∞ (H1) norm is derived. The numerical exper- iments are presented to verify the theoretical results. 展开更多
关键词 convection-diffusion equation H1 method space-time discontinuous finiteelement method error estimate
下载PDF
On the Behavior of Combination High-Order Compact Approximations with Preconditioned Methods in the Diffusion-Convection Equation
12
作者 Ahmad Golbabai Mahboubeh Molavi-Arabshahi 《Applied Mathematics》 2011年第12期1462-1468,共7页
In this paper, a family of high-order compact finite difference methods in combination preconditioned methods are used for solution of the Diffusion-Convection equation. We developed numerical methods by replacing the... In this paper, a family of high-order compact finite difference methods in combination preconditioned methods are used for solution of the Diffusion-Convection equation. We developed numerical methods by replacing the time and space derivatives by compact finite-difference approximations. The system of resulting nonlinear finite difference equations are solved by preconditioned Krylov subspace methods. Numerical results are given to verify the behavior of high-order compact approximations in combination preconditioned methods for stability, convergence. Also, the accuracy and efficiency of the proposed scheme are considered. 展开更多
关键词 COMPACT HIGH-ORDER Approximation diffusion-convection equation Krylov Subspace METHODS PRECONDITIONER
下载PDF
A Spectral Method for Convection-Diffusion Equations
13
作者 Peng Guo Qin Wang Zhengang Zhao 《Applied Mathematics》 2022年第12期968-987,共20页
In the practical problems such as nuclear waste pollution and seawater intrusion etc., many problems are reduced to solving the convection-diffusion equation, so the research of convection-diffusion equation is of gre... In the practical problems such as nuclear waste pollution and seawater intrusion etc., many problems are reduced to solving the convection-diffusion equation, so the research of convection-diffusion equation is of great value. In this work, a spectral method is presented for solving one and two dimensional convection-diffusion equation with source term. The finite difference method is also used to solve the convection diffusion equation. The numerical experiments show that the spectral method is more efficient than other methods for solving the convection-diffusion equation. 展开更多
关键词 convection-diffusion equation Central Finite Difference Method Upwind Difference Method CHEBYSHEV Spectral Method
下载PDF
Comparison of Fixed Point Methods and Krylov Subspace Methods Solving Convection-Diffusion Equations
14
作者 Xijian Wang 《American Journal of Computational Mathematics》 2015年第2期113-126,共14页
The paper first introduces two-dimensional convection-diffusion equation with boundary value condition, later uses the finite difference method to discretize the equation and analyzes positive definite, diagonally dom... The paper first introduces two-dimensional convection-diffusion equation with boundary value condition, later uses the finite difference method to discretize the equation and analyzes positive definite, diagonally dominant and symmetric properties of the discretization matrix. Finally, the paper uses fixed point methods and Krylov subspace methods to solve the linear system and compare the convergence speed of these two methods. 展开更多
关键词 Finite DIFFERENCE METHOD convection-diffusion equation DISCRETIZATION Matrix ITERATIVE METHOD CONVERGENCE Speed
下载PDF
STREAMLINE DIFFUSION F.E.M. FOR SOBOLEV EQUATIONS WITH CONVECTION DOMINATED TERM 被引量:5
15
作者 Sun Tongjun Now address:Department of Mathematics and Physics, South Campus of Shandong University, Jinan 250061.Dept. of Math., South Campus of Shandong Univ.,Jinan 250061. 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2001年第1期63-71,共9页
In this paper,a streamline diffusion F.E.M. for linear Sobolev equations with convection dominated term is given.According to the range of space time F.E mesh parameter h ,two choices for artifical diffusion par... In this paper,a streamline diffusion F.E.M. for linear Sobolev equations with convection dominated term is given.According to the range of space time F.E mesh parameter h ,two choices for artifical diffusion parameter δ are presented,and for the corresponding computation schemes the stability and error estimates in suitable norms are estabilished. 展开更多
关键词 STREAMLINE diffusion sobolev equations convection dominated term.
下载PDF
A Priori and A Posteriori Error Estimates of Streamline Diffusion Finite Element Method for Optimal Control Problem Governed by Convection Dominated Diffusion Equation 被引量:5
16
作者 Ningning Yan Zhaojie Zhou 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2008年第3期297-320,共24页
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc... In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results. 展开更多
关键词 Constrained optimal control problem convection dominated diffusion equation stream-line diffusion finite element method a priori error estimate a posteriori error estimate.
下载PDF
SINGULAR SOLUTIONS FOR A CONVECTION DIFFUSION EQUATION WITH ABSORPTION 被引量:2
17
作者 赵俊宁 《Acta Mathematica Scientia》 SCIE CSCD 1995年第4期431-441,共11页
In this paper we discuss the existence and nonexistence of singular solutions for a porous medium equations with convection and absorption terms.
关键词 convection diffusion equation singular solution existence and nonexistence
下载PDF
THE POINTWISE ESTIMATES OF SOLUTIONS FOR A NONLINEAR CONVECTION DIFFUSION REACTION EQUATION 被引量:1
18
作者 刘国威 《Acta Mathematica Scientia》 SCIE CSCD 2017年第1期79-96,共18页
This paper studies the time asymptotic behavior of solutions for a nonlinear convection diffusion reaction equation in one dimension.First,the pointwise estimates of solutions are obtained,furthermore,we obtain the op... This paper studies the time asymptotic behavior of solutions for a nonlinear convection diffusion reaction equation in one dimension.First,the pointwise estimates of solutions are obtained,furthermore,we obtain the optimal Lp,1≤ p ≤ +∞,convergence rate of solutions for small initial data.Then we establish the local existence of solutions,the blow up criterion and the sufficient condition to ensure the nonnegativity of solutions for large initial data.Our approach is based on the detailed analysis of the Green function of the linearized equation and some energy estimates. 展开更多
关键词 convection diffusion reaction equation pointwise estimate Green function energy method
下载PDF
Numerical Simulation of Groundwater Pollution Problems Based on Convection Diffusion Equation 被引量:2
19
作者 Lingyu Li Zhe Yin 《American Journal of Computational Mathematics》 2017年第3期350-370,共21页
The analytical solution of the convection diffusion equation is considered by two-dimensional Fourier transform and the inverse Fourier transform. To get the numerical solution, the Crank-Nicolson finite difference me... The analytical solution of the convection diffusion equation is considered by two-dimensional Fourier transform and the inverse Fourier transform. To get the numerical solution, the Crank-Nicolson finite difference method is constructed, which is second-order accurate in time and space. Numerical simulation shows excellent agreement with the analytical solution. The dynamic visualization of the simulating results is realized on ArcGIS platform. This work provides a quick and intuitive decision-making basis for water resources protection, especially in dealing with water pollution emergencies. 展开更多
关键词 GROUNDWATER POLLUTION Two-Dimensional convection diffusion equation FINITE DIFFERENCE Method Visualization NUMERICAL Simulation
下载PDF
PERTURBATION FINITE VOLUME METHOD FOR CONVECTIVE-DIFFUSION INTEGRAL EQUATION 被引量:5
20
作者 高智 杨国伟 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第6期580-590,共11页
A perturbation finite volume(PFV)method for the convective-diffusion integral equa- tion is developed in this paper.The PFV scheme is an upwind and mixed scheme using any higher-order interpolation and second-order in... A perturbation finite volume(PFV)method for the convective-diffusion integral equa- tion is developed in this paper.The PFV scheme is an upwind and mixed scheme using any higher-order interpolation and second-order integration approximations,with the least nodes similar to the standard three-point schemes,that is,the number of the nodes needed is equal to unity plus the face-number of the control volume.For instance,in the two-dimensional(2-D)case,only four nodes for the triangle grids and five nodes for the Cartesian grids are utilized,respectively.The PFV scheme is applied on a number of 1-D linear and nonlinear problems,2-D and 3-D flow model equations.Comparing with other standard three-point schemes,the PFV scheme has much smaller numerical diffusion than the first-order upwind scheme(UDS).Its numerical accuracies are also higher than the second-order central scheme(CDS),the power-law scheme(PLS)and QUICK scheme. 展开更多
关键词 perturbation finite volume convective-diffusion integral equation numerical accuracy
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部