In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc...In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.展开更多
In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization G...In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization Galerkin method. A priori error estimates are derived for the state, the adjoint state and the control. Moreover, residual type a posteriori error estimates in the L^2-norm are obtained. Finally, two numerical experiments are presented to illustrate the theoretical results.展开更多
In this paper,we apply streamline-diffusion and Galerkin-least-squares fi-nite element methods for 2D steady-state two-phase model in the cathode of polymer electrolyte fuel cell(PEFC)that contains a gas channel and a...In this paper,we apply streamline-diffusion and Galerkin-least-squares fi-nite element methods for 2D steady-state two-phase model in the cathode of polymer electrolyte fuel cell(PEFC)that contains a gas channel and a gas diffusion layer(GDL).This two-phase PEFC model is typically modeled by a modified Navier-Stokes equation for the mass and momentum,with Darcy’s drag as an additional source term in momentum for flows through GDL,and a discontinuous and degenerate convectiondiffusion equation for water concentration.Based on the mixed finite element method for the modified Navier-Stokes equation and standard finite element method for water equation,we design streamline-diffusion and Galerkin-least-squares to overcome the dominant convection arising from the gas channel.Meanwhile,we employ Kirchhoff transformation to deal with the discontinuous and degenerate diffusivity in water concentration.Numerical experiments demonstrate that our finite element methods,together with these numerical techniques,are able to get accurate physical solutions with fast convergence.展开更多
基金supported by the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grants 60474027 and 10771211.
文摘In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.
基金support of the Chinese and German Research Foundations through the Sino-German Workshop on Applied Mathematics held in Hangzhou in October 2007support of the German Research Foundation through the grants DFG06-381 and DFG06-382+1 种基金support of the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grant 60474027 and 10771211
文摘In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization Galerkin method. A priori error estimates are derived for the state, the adjoint state and the control. Moreover, residual type a posteriori error estimates in the L^2-norm are obtained. Finally, two numerical experiments are presented to illustrate the theoretical results.
基金This work was supported in part by NSF DMS-0609727,the Center for Computa-tional Mathematics and Applications of Penn State University.J.Xu was also supported in part by NSFC-10501001 and Alexander H.Humboldt Foundation.
文摘In this paper,we apply streamline-diffusion and Galerkin-least-squares fi-nite element methods for 2D steady-state two-phase model in the cathode of polymer electrolyte fuel cell(PEFC)that contains a gas channel and a gas diffusion layer(GDL).This two-phase PEFC model is typically modeled by a modified Navier-Stokes equation for the mass and momentum,with Darcy’s drag as an additional source term in momentum for flows through GDL,and a discontinuous and degenerate convectiondiffusion equation for water concentration.Based on the mixed finite element method for the modified Navier-Stokes equation and standard finite element method for water equation,we design streamline-diffusion and Galerkin-least-squares to overcome the dominant convection arising from the gas channel.Meanwhile,we employ Kirchhoff transformation to deal with the discontinuous and degenerate diffusivity in water concentration.Numerical experiments demonstrate that our finite element methods,together with these numerical techniques,are able to get accurate physical solutions with fast convergence.