This study discusses the sensitivity of convective parameterization schemes(CPSs) in the Regional Climate Model(version 4.3)(Reg CM4.3) over East/South Asia. The simulations using different CPSs in Reg CM are co...This study discusses the sensitivity of convective parameterization schemes(CPSs) in the Regional Climate Model(version 4.3)(Reg CM4.3) over East/South Asia. The simulations using different CPSs in Reg CM are compared to discover a suitable scheme for this region, as the performance of different schemes is greatly influenced by region and seasonality. Over Southeast China and the Bay of Bengal, the Grell scheme exhibits the lowest RMSEs of summer precipitation compared to observed data. Moreover, the Emanuel over land and Grell over ocean(ELGO) scheme enhances the simulation, in comparison with any single CPS(Grell/Emanuel) over Western Ghats, Sri Lanka, and Southeast India. Over the Huang–Huai–Hai Plain(3H) and Tibetan Plateau(TP) regions of China, the Tiedtke scheme simulates the more reasonable summer precipitation with high correlation coefficient and comparable amplitude. Especially, it reproduces a minimum convective precipitation bias of 8 mm d^-1and the lowest RMSEs throughout the year over East/South Asia. Furthermore, for seasonal variation of precipitation, the Tiedtke scheme results are closer to the observed data over the 3H and TP regions. However, none of the CPSs is able to simulate the seasonal variation over North Pakistan(NP). In comparison with previous research, the results of this study support the Grell scheme over South Asia. However, the Tiedtke scheme shows superiority for the 3H, TP and NP regions. The thicker PBL, less surface latent heat flux, the unique ability of deep convection and the entrainment process in the Tiedtke scheme are responsible for reducing the wet bias.展开更多
To describe the evolution of atmospheric processes and rainfall forecast in Tanzania, the Advanced Weather Research and Forecasting (WRF-ARW) model was used. The principal objectives of this study were 1) the understa...To describe the evolution of atmospheric processes and rainfall forecast in Tanzania, the Advanced Weather Research and Forecasting (WRF-ARW) model was used. The principal objectives of this study were 1) the understanding of mesoscale WRF model and adapting the model for Tanzania;2) to conduct numerical experiments using WRF model with different convective parameterization schemes (CP’s) and investigate the impact of each scheme on the quality of rainfall forecast;and 3) the investigation of the capability of WRF model to successfully simulate rainfall amount during strong downpour. The impact on the quality of rainfall forecast of six CP’s was investigated. Two rainy seasons, short season “Vuli” from October to December (OND) and long season “Masika” from March to May (MAM) were targeted. The results of numerical experiments showed that for rainfall prediction in Dar es Salaam and (the entire coast of the Indian Ocean), GD scheme performed better during OND and BMJ scheme during MAM. Results also showed that NC scheme should not be used, which is in agreement to the fact that in tropics rainfall is from convective activities. WRF model to some extent performs better in the cases of extreme rainfall.展开更多
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2EW-QN208)a project of the National Natural Science Foundation of China (Grant No. 41275082)+1 种基金the National Basic Research Program of China (Grant Nos. 2010CB428502 and 2011CB952003)the R&D Special Fund for Public Welfare Industry (meteorology) of the Ministry of Finance and the Ministry of Science and Technology (GYHY201006014-04)
文摘This study discusses the sensitivity of convective parameterization schemes(CPSs) in the Regional Climate Model(version 4.3)(Reg CM4.3) over East/South Asia. The simulations using different CPSs in Reg CM are compared to discover a suitable scheme for this region, as the performance of different schemes is greatly influenced by region and seasonality. Over Southeast China and the Bay of Bengal, the Grell scheme exhibits the lowest RMSEs of summer precipitation compared to observed data. Moreover, the Emanuel over land and Grell over ocean(ELGO) scheme enhances the simulation, in comparison with any single CPS(Grell/Emanuel) over Western Ghats, Sri Lanka, and Southeast India. Over the Huang–Huai–Hai Plain(3H) and Tibetan Plateau(TP) regions of China, the Tiedtke scheme simulates the more reasonable summer precipitation with high correlation coefficient and comparable amplitude. Especially, it reproduces a minimum convective precipitation bias of 8 mm d^-1and the lowest RMSEs throughout the year over East/South Asia. Furthermore, for seasonal variation of precipitation, the Tiedtke scheme results are closer to the observed data over the 3H and TP regions. However, none of the CPSs is able to simulate the seasonal variation over North Pakistan(NP). In comparison with previous research, the results of this study support the Grell scheme over South Asia. However, the Tiedtke scheme shows superiority for the 3H, TP and NP regions. The thicker PBL, less surface latent heat flux, the unique ability of deep convection and the entrainment process in the Tiedtke scheme are responsible for reducing the wet bias.
文摘To describe the evolution of atmospheric processes and rainfall forecast in Tanzania, the Advanced Weather Research and Forecasting (WRF-ARW) model was used. The principal objectives of this study were 1) the understanding of mesoscale WRF model and adapting the model for Tanzania;2) to conduct numerical experiments using WRF model with different convective parameterization schemes (CP’s) and investigate the impact of each scheme on the quality of rainfall forecast;and 3) the investigation of the capability of WRF model to successfully simulate rainfall amount during strong downpour. The impact on the quality of rainfall forecast of six CP’s was investigated. Two rainy seasons, short season “Vuli” from October to December (OND) and long season “Masika” from March to May (MAM) were targeted. The results of numerical experiments showed that for rainfall prediction in Dar es Salaam and (the entire coast of the Indian Ocean), GD scheme performed better during OND and BMJ scheme during MAM. Results also showed that NC scheme should not be used, which is in agreement to the fact that in tropics rainfall is from convective activities. WRF model to some extent performs better in the cases of extreme rainfall.