The concern of the present work is the convective drying of empty cocoa shells in an indirect solar dryer. Some drying experiments, using one sample, were carried out. During the experiments, the sample is introduced ...The concern of the present work is the convective drying of empty cocoa shells in an indirect solar dryer. Some drying experiments, using one sample, were carried out. During the experiments, the sample is introduced in the drying chamber. Then at steady time intervals, the sample is withdrawn from the drying chamber, for a rapid weighing. After each weighing, the sample is reintroduced in the dryer. At each time interval, the ambient temperature of the drying chamber and its relative humidity γ are measured by a thermo-hygrometer. From the experimental data, a theoretical determination of the moisture evaporated from the product was performed and a good agreement was found between the theoretical and experimental values, confirmed by the value of the RMSE. Those calculations used the constants in the Nusselt number found in literature. Then those constants were evaluated again, to get new values more suitable with the experimental data. The dimensionless numbers of Nusselt, Grashof and Prandtl were calculated. That allowed the calculation of the average value of the Nusselt number. The average convective heat transfer coefficient was determined.展开更多
A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The e...A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The equations that govern natural convection in water are solved by the finite volume method and Thomas’salgorithm. The adequacy between the velocity and pressure fields is ensured by the SIMPLE algorithm. We are going to evaluate the water losses by evaporation from three dams in the Nakanbé basin in Burkina Faso for a period of thirty years, that is to say from January 1, 1991, to March 15, 2020. The three dams have a rate of evaporation greater than 40% of the volume of water stored. Indeed the rate of evaporation in each dam increases with the water filling rate in the reservoir: we have observed the following results for each dam in the Nakanbé basin;for the date of 02/27/1988 to 03/13/2020., the Loumbila dam received a total volume of stored water of 22.02 Mm<sup>3</sup> and 10.57 Mm<sup>3</sup> as the total volume of water evaporated at the same date. At the Ouaga dam (2 + 3), it stored a water volume of 4.06 Mm<sup>3</sup> and evaporated 2.03 Mm<sup>3</sup> of its storage volume from 01/01/1988 to 05/07/2016. Finally, with regard to the Bagré dam, it stored 745.16 Mm<sup>3</sup> of water and 365.13 Mm<sup>3</sup> as the volume of water evaporated from 01/01/1993 to 03/31/2020.展开更多
Classical theories have successfully provided an explanation for convection in a liquid layer heated from below without evaporation. However, these theories are inadequate to account for the convective instabilities i...Classical theories have successfully provided an explanation for convection in a liquid layer heated from below without evaporation. However, these theories are inadequate to account for the convective instabilities in an evaporating liquid layer, especially in the case when it is cooled from below. In the present paper, we study the onset of Marangoni convection in a liquid layer being overlain by a vapor layer. A new two-sided model is put forward instead of the one-sided model in previous studies. Marangoni-Béard instabilities in evaporating liquid thin layers are investigated with a linear instability analysis. We define a new evaporation Blot number, which is different from that in previous studies and discuss the influences of reference evaporating velocity and evaporation Blot number on the vapor-liquid system. At the end, we explain why the instability occurs even when an evaporating liquid layer is cooled from below.展开更多
In the study of diagnosing climate simulations and understanding the dynamics of precipitation extremes,it is an essential step to adopt a simple model to relate water vapor condensation and precipitation,which occur ...In the study of diagnosing climate simulations and understanding the dynamics of precipitation extremes,it is an essential step to adopt a simple model to relate water vapor condensation and precipitation,which occur at cloudmicrophysical and convective scales,to large-scale variables.Several simple models have been proposed;however,improvement is still needed in both their accuracy and/or the physical basis.Here,we propose a two-plume convective model that takes into account the subgrid inhomogeneity of precipitation extremes.The convective model has three components,i.e.,cloud condensation,rain evaporation,and environmental descent,and is built upon the zero-buoyancy approximation and guidance from the high-resolution reanalysis.Evaluated against the CMIP5 climate simulations,the convective model shows large improvements in reproducing precipitation extremes compared to previously proposed models.Thus,the two-plume convective model better captures the main physical processes and serves as a useful diagnostic tool for precipitation extremes.展开更多
The accelerated depletion of oil reserves and the often exorbitant cost of fossil fuels contribute to the development of fuels from renewable sources. The objective of this work is to analyze the influence of the prop...The accelerated depletion of oil reserves and the often exorbitant cost of fossil fuels contribute to the development of fuels from renewable sources. The objective of this work is to analyze the influence of the properties of renewable fuels on their evaporation in natural convection, their combustion and their use in internal combustion engines. A summary of the various numerical and experimental works from the literature has been presented in this work. This work focuses on the numerical modelling of the natural convection evaporation of an isolated drop of a liquid fuel in natural convection. The transfers in the liquid and vapour phases are described by the conservation equations of mass and species, momentum and energy. The main feature of this work is the consideration of advection, azimuthal angle and thickness of the vapour phase of the drop during evaporation of the drop.展开更多
Heat transfer characteristics of a small heated device have been investigated in a liquid bath with gas jetimpingement as function of gas flow rate,coolant temperature,liquid phsicochemical properties,heat flux,heat s...Heat transfer characteristics of a small heated device have been investigated in a liquid bath with gas jetimpingement as function of gas flow rate,coolant temperature,liquid phsicochemical properties,heat flux,heat source size,ambient pressure and the distance between jet and heated wall.The experimental results show that the agitation of liquid caused by gas jet bubbles increases greatly therate of heat transfer,and the evaporation of coolant near the wall,which was due to the concentration differencebetween gas-liquid interface and bulk gas phase,gives additional enhancement of heat transfer.The rate ofevaporation related to the bubble growth was mathematically formulated.By using the simultaneous heat and mass transfer model,the convective heat transfer coefficient and masstransfer coefficient can be deduced from the experimental results.In addition,the local heat transfer coefficient and the distribution of evaporation heat flux on the smallheated surface are investigated mathematically and experimentally.展开更多
Using near-azeotropic refrigerant R410A as the working fluid, the experimental studies on the horizontal micro-fin tubes were conducted. Several factors affecting heat transfer coefficients were analyzed, and the char...Using near-azeotropic refrigerant R410A as the working fluid, the experimental studies on the horizontal micro-fin tubes were conducted. Several factors affecting heat transfer coefficients were analyzed, and the characteristics of flow boiling of the refrigerant in the horizontal micro-fin tubes were discussed. The local heat transfer coefficients increase with mass flux, heat flux and quality. And the heat transfer enhancement factor of those testing tubes is about 1.6 to 2.2.展开更多
Liquid layers evaporating under the influence of a gas shear flow presents a non-uniform distribution of the evaporation rate all along the interface. Being the evaporation an endothermic process, a thermal gradient a...Liquid layers evaporating under the influence of a gas shear flow presents a non-uniform distribution of the evaporation rate all along the interface. Being the evaporation an endothermic process, a thermal gradient along the interface is generated and thermo-capillary flows are induced. Hence, two opposite mechanisms regulate the movement of the interface: the shear stress of the gas that entrains the interface in the direction of the flow and the thermo-capillary stress that forces the interface to move against the flow direction. The composition of these mechanisms at the interface generates an unstable thermal patterning. The dynamic evolution of the patterning and the relative evaporation rate are strongly influenced by the flow rate of inert gas, the layer thickness and the liquid thermo-physical properties. The goal of the present work is to study numerically how the evaporation process is influenced by the above-mentioned mechanisms. The focus will be on the evolution of the thermal patterning at the interface and the assessment of the main factors influencing the computed evaporation rate.展开更多
A special visible experiment facility has been designed and built, and an observable experiment is per- formed by pouring one or several high-temperature particles into a water pool in the facility. The experiment res...A special visible experiment facility has been designed and built, and an observable experiment is per- formed by pouring one or several high-temperature particles into a water pool in the facility. The experiment result has verified Yang’s evaporation drag model, which holds that the non-symmetric profile of the local evaporation rate and the local density of vapor would bring about a resultant force on the hot particle so as to resist its motion. How- ever, in Yang’s evaporation drag model, radiation heat transfer is taken as the only way to transfer heat from hot par- ticle to the vapor-liquid interface, and all of the radiation energy is deposited on the vapor-liquid interface and con- tributed to the vaporization rate and mass balance of the vapor film. In improved model heat conduction and heat convection are taken into account. This paper presents calculations of the improved model, putting emphasis on the effect of hot particle’s temperature on the radiation absorption behavior of water.展开更多
The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need...The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need to be addressed to make this technology more reliable and easy to implement.This experimental study deals with the performances of a tube-type indirect evaporative cooler based on an aluminum tube with a 10 mm diameter.In particular,the required tests were carried out considering a range of dry-bulb temperatures between 16℃ and 18℃ and a temperature difference between the wet-bulb and dry-bulb temperature of 2℃∼4℃.The integrated convective heat transfer coefficient inside the tube in the drenching condition has been found to lie in the range between 36.10 and 437.4(W/(m^(2)⋅K)).展开更多
The coupling mechanism of thermocapillary convection and evaporation effect in evaporating liquids was studied experimentally. The experiments were carried out to study a thin evaporating liquid layer in a rectangular...The coupling mechanism of thermocapillary convection and evaporation effect in evaporating liquids was studied experimentally. The experiments were carried out to study a thin evaporating liquid layer in a rectangular test cell when the upper surface was open to air. By altering the imposed horizontal temperature differences and heights of liquid layers, the average evaporating rate and interfacial temperature profiles were measured. The flow fields were also visualized by PIV method. For comparison, the experiments were repeated by use of another two non-evaporating liquids to study the influence of evaporation effect. The results reveal evidently the role that evaporation effect plays in the coupling with thermocapillary convection.展开更多
文摘The concern of the present work is the convective drying of empty cocoa shells in an indirect solar dryer. Some drying experiments, using one sample, were carried out. During the experiments, the sample is introduced in the drying chamber. Then at steady time intervals, the sample is withdrawn from the drying chamber, for a rapid weighing. After each weighing, the sample is reintroduced in the dryer. At each time interval, the ambient temperature of the drying chamber and its relative humidity γ are measured by a thermo-hygrometer. From the experimental data, a theoretical determination of the moisture evaporated from the product was performed and a good agreement was found between the theoretical and experimental values, confirmed by the value of the RMSE. Those calculations used the constants in the Nusselt number found in literature. Then those constants were evaluated again, to get new values more suitable with the experimental data. The dimensionless numbers of Nusselt, Grashof and Prandtl were calculated. That allowed the calculation of the average value of the Nusselt number. The average convective heat transfer coefficient was determined.
文摘A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The equations that govern natural convection in water are solved by the finite volume method and Thomas’salgorithm. The adequacy between the velocity and pressure fields is ensured by the SIMPLE algorithm. We are going to evaluate the water losses by evaporation from three dams in the Nakanbé basin in Burkina Faso for a period of thirty years, that is to say from January 1, 1991, to March 15, 2020. The three dams have a rate of evaporation greater than 40% of the volume of water stored. Indeed the rate of evaporation in each dam increases with the water filling rate in the reservoir: we have observed the following results for each dam in the Nakanbé basin;for the date of 02/27/1988 to 03/13/2020., the Loumbila dam received a total volume of stored water of 22.02 Mm<sup>3</sup> and 10.57 Mm<sup>3</sup> as the total volume of water evaporated at the same date. At the Ouaga dam (2 + 3), it stored a water volume of 4.06 Mm<sup>3</sup> and evaporated 2.03 Mm<sup>3</sup> of its storage volume from 01/01/1988 to 05/07/2016. Finally, with regard to the Bagré dam, it stored 745.16 Mm<sup>3</sup> of water and 365.13 Mm<sup>3</sup> as the volume of water evaporated from 01/01/1993 to 03/31/2020.
基金The project supported by the National Natural Science Foundation of China (10372105) and the Knowledge Innovation Program of Chinese Academy of Sciences (KJCX2-SW-L05 and KGCX-SW-409) The English text was polished by Keren Wang.
文摘Classical theories have successfully provided an explanation for convection in a liquid layer heated from below without evaporation. However, these theories are inadequate to account for the convective instabilities in an evaporating liquid layer, especially in the case when it is cooled from below. In the present paper, we study the onset of Marangoni convection in a liquid layer being overlain by a vapor layer. A new two-sided model is put forward instead of the one-sided model in previous studies. Marangoni-Béard instabilities in evaporating liquid thin layers are investigated with a linear instability analysis. We define a new evaporation Blot number, which is different from that in previous studies and discuss the influences of reference evaporating velocity and evaporation Blot number on the vapor-liquid system. At the end, we explain why the instability occurs even when an evaporating liquid layer is cooled from below.
基金National Natural Science Foundation of China(Grant nos.41875050 and 42075146).
文摘In the study of diagnosing climate simulations and understanding the dynamics of precipitation extremes,it is an essential step to adopt a simple model to relate water vapor condensation and precipitation,which occur at cloudmicrophysical and convective scales,to large-scale variables.Several simple models have been proposed;however,improvement is still needed in both their accuracy and/or the physical basis.Here,we propose a two-plume convective model that takes into account the subgrid inhomogeneity of precipitation extremes.The convective model has three components,i.e.,cloud condensation,rain evaporation,and environmental descent,and is built upon the zero-buoyancy approximation and guidance from the high-resolution reanalysis.Evaluated against the CMIP5 climate simulations,the convective model shows large improvements in reproducing precipitation extremes compared to previously proposed models.Thus,the two-plume convective model better captures the main physical processes and serves as a useful diagnostic tool for precipitation extremes.
文摘The accelerated depletion of oil reserves and the often exorbitant cost of fossil fuels contribute to the development of fuels from renewable sources. The objective of this work is to analyze the influence of the properties of renewable fuels on their evaporation in natural convection, their combustion and their use in internal combustion engines. A summary of the various numerical and experimental works from the literature has been presented in this work. This work focuses on the numerical modelling of the natural convection evaporation of an isolated drop of a liquid fuel in natural convection. The transfers in the liquid and vapour phases are described by the conservation equations of mass and species, momentum and energy. The main feature of this work is the consideration of advection, azimuthal angle and thickness of the vapour phase of the drop during evaporation of the drop.
基金The project supported by National Natural Science Foundation of China.
文摘Heat transfer characteristics of a small heated device have been investigated in a liquid bath with gas jetimpingement as function of gas flow rate,coolant temperature,liquid phsicochemical properties,heat flux,heat source size,ambient pressure and the distance between jet and heated wall.The experimental results show that the agitation of liquid caused by gas jet bubbles increases greatly therate of heat transfer,and the evaporation of coolant near the wall,which was due to the concentration differencebetween gas-liquid interface and bulk gas phase,gives additional enhancement of heat transfer.The rate ofevaporation related to the bubble growth was mathematically formulated.By using the simultaneous heat and mass transfer model,the convective heat transfer coefficient and masstransfer coefficient can be deduced from the experimental results.In addition,the local heat transfer coefficient and the distribution of evaporation heat flux on the smallheated surface are investigated mathematically and experimentally.
基金Shanghai Leading Academic Discipline Project(No.T0503)
文摘Using near-azeotropic refrigerant R410A as the working fluid, the experimental studies on the horizontal micro-fin tubes were conducted. Several factors affecting heat transfer coefficients were analyzed, and the characteristics of flow boiling of the refrigerant in the horizontal micro-fin tubes were discussed. The local heat transfer coefficients increase with mass flux, heat flux and quality. And the heat transfer enhancement factor of those testing tubes is about 1.6 to 2.2.
文摘Liquid layers evaporating under the influence of a gas shear flow presents a non-uniform distribution of the evaporation rate all along the interface. Being the evaporation an endothermic process, a thermal gradient along the interface is generated and thermo-capillary flows are induced. Hence, two opposite mechanisms regulate the movement of the interface: the shear stress of the gas that entrains the interface in the direction of the flow and the thermo-capillary stress that forces the interface to move against the flow direction. The composition of these mechanisms at the interface generates an unstable thermal patterning. The dynamic evolution of the patterning and the relative evaporation rate are strongly influenced by the flow rate of inert gas, the layer thickness and the liquid thermo-physical properties. The goal of the present work is to study numerically how the evaporation process is influenced by the above-mentioned mechanisms. The focus will be on the evolution of the thermal patterning at the interface and the assessment of the main factors influencing the computed evaporation rate.
基金Partially financed by National Natural Science Fund of China (No. 50046026 & No. 50376036) and 985 Engineering Fund of Shanghai Jiaotong University.
文摘A special visible experiment facility has been designed and built, and an observable experiment is per- formed by pouring one or several high-temperature particles into a water pool in the facility. The experiment result has verified Yang’s evaporation drag model, which holds that the non-symmetric profile of the local evaporation rate and the local density of vapor would bring about a resultant force on the hot particle so as to resist its motion. How- ever, in Yang’s evaporation drag model, radiation heat transfer is taken as the only way to transfer heat from hot par- ticle to the vapor-liquid interface, and all of the radiation energy is deposited on the vapor-liquid interface and con- tributed to the vaporization rate and mass balance of the vapor film. In improved model heat conduction and heat convection are taken into account. This paper presents calculations of the improved model, putting emphasis on the effect of hot particle’s temperature on the radiation absorption behavior of water.
基金This work was supported by Natural Science Basic Research Program of Shaanxi(2021JQ-689).
文摘The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need to be addressed to make this technology more reliable and easy to implement.This experimental study deals with the performances of a tube-type indirect evaporative cooler based on an aluminum tube with a 10 mm diameter.In particular,the required tests were carried out considering a range of dry-bulb temperatures between 16℃ and 18℃ and a temperature difference between the wet-bulb and dry-bulb temperature of 2℃∼4℃.The integrated convective heat transfer coefficient inside the tube in the drenching condition has been found to lie in the range between 36.10 and 437.4(W/(m^(2)⋅K)).
基金supported by the National Natural Science Foundation of China (Grant Nos. 10772185, 50890182)Knowledge Innovation Projects of Chinese Academy of Sciences (Grant No. KGCX-SW-409) and Institate of Mechanics, CAS
文摘The coupling mechanism of thermocapillary convection and evaporation effect in evaporating liquids was studied experimentally. The experiments were carried out to study a thin evaporating liquid layer in a rectangular test cell when the upper surface was open to air. By altering the imposed horizontal temperature differences and heights of liquid layers, the average evaporating rate and interfacial temperature profiles were measured. The flow fields were also visualized by PIV method. For comparison, the experiments were repeated by use of another two non-evaporating liquids to study the influence of evaporation effect. The results reveal evidently the role that evaporation effect plays in the coupling with thermocapillary convection.