The characteristics of convective-scale downdrafts in the outer core of tropical cyclones in the lower-and upper-layer vertical wind shear(VWS)are investigated based on two high-resolution idealized numerical experime...The characteristics of convective-scale downdrafts in the outer core of tropical cyclones in the lower-and upper-layer vertical wind shear(VWS)are investigated based on two high-resolution idealized numerical experiments.Four types of outer-core downdrafts,originating from the lower troposphere,the midtroposphere,the upper level,and the tropopause,respectively,are found.The downdrafts originating from the lower and mid troposphere can penetrate down near the surface,and those originating from the tropopause in upper-layer VWS tend to penetrate more downward than in lower-layer VWS.Downdrafts tend to be located in the more upwind portion of the downshear-right quadrant in lower-layer VWS than in upper-layer VWS.The frequency of downdrafts outside and upwind of the parent updraft increases with the increasing downdraft top height.Vertical momentum budgets indicate that downward-oriented buoyancy due to the evaporational cooling of rainwater and precipitation drag mainly contribute to the occurrence of low-level downdrafts,and the midlevel and upper-level downdrafts originate due to precipitation drag and are strengthened by the downward-oriented,buoyancy-induced perturbation pressure gradient.The processes governing the downdrafts from the tropopause are different between the two experiments.More icy-type particles are produced and transported outward at upper levels in the lower-layer shear experiment,resulting in larger downward-oriented buoyancy due to the sublimational cooling of icy-type particles and contributing to the development/maintenance of the downdraft from the tropopause in that experiment.However,the downwardoriented perturbation pressure gradient leads to the development/maintenance of the downdraft from the tropopause in the upper-layer shear experiment.展开更多
This study investigated the regime-dependent predictability using convective-scale ensemble forecasts initialized with different initial condition perturbations in the Yangtze and Huai River basin(YHRB)of East China.T...This study investigated the regime-dependent predictability using convective-scale ensemble forecasts initialized with different initial condition perturbations in the Yangtze and Huai River basin(YHRB)of East China.The scale-dependent error growth(ensemble variability)and associated impact on precipitation forecasts(precipitation uncertainties)were quantitatively explored for 13 warm-season convective events that were categorized in terms of strong forcing and weak forcing.The forecast error growth in the strong-forcing regime shows a stepwise increase with increasing spatial scale,while the error growth shows a larger temporal variability with an afternoon peak appearing at smaller scales under weak forcing.This leads to the dissimilarity of precipitation uncertainty and shows a strong correlation between error growth and precipitation across spatial scales.The lateral boundary condition errors exert a quasi-linear increase on error growth with time at the larger scale,suggesting that the large-scale flow could govern the magnitude of error growth and associated precipitation uncertainties,especially for the strong-forcing regime.Further comparisons between scale-based initial error sensitivity experiments show evident scale interaction including upscale transfer of small-scale errors and downscale cascade of larger-scale errors.Specifically,small-scale errors are found to be more sensitive in the weak-forcing regime than those under strong forcing.Meanwhile,larger-scale initial errors are responsible for the error growth after 4 h and produce the precipitation uncertainties at the meso-β-scale.Consequently,these results can be used to explain underdispersion issues in convective-scale ensemble forecasts and provide feedback for ensemble design over the YHRB.展开更多
Sulphonated nano-structured micro-porous ion exchange polymers, known as sulphonated PolyHIPE Polymers (s-PHPs) were used in syngas cleaning to investigate their impact on tar composition, concentration and dew poin...Sulphonated nano-structured micro-porous ion exchange polymers, known as sulphonated PolyHIPE Polymers (s-PHPs) were used in syngas cleaning to investigate their impact on tar composition, concentration and dew point depression during the gasification of fuel cane bagasse as a model biomass. The results showed that the s-PHPs used as a secondary syngas treatment system, was highly effective at adsorbing and reducing the concentration of all class of tars in syngas by 95%-80% which resulted in tar dew point depression from 90 ~C to 73 ~C. It was shown that tars underwent chemical reactions within s-PHPs, indicating that tar diffusion from syngas was driven by chemical potential. It was also observed that s-PHPs also captured ash forming elements from syngas. The use of s-PHPs in gasification as well as in an integrated thermochemical biorefinery technology is discussed since the tar loaded s-PHPs can be used as natural herbicides in the form of soil additives to enhance the biomass growth and crop yield.展开更多
Biomass gasification is a thermochemical conversion process that dates back to the 19th century. Nevertheless, designing and operating a gasifier system is not an easy task. Every biomass feedstock has different chara...Biomass gasification is a thermochemical conversion process that dates back to the 19th century. Nevertheless, designing and operating a gasifier system is not an easy task. Every biomass feedstock has different characteristics and the gasifier needs to be designed according to those qualities. Hence, many laboratory analyses on bamboo were carried out for this study. This study also concentrates on finding the best possible process variables for a bamboo fueled downdraft gasifier through a sensitivity analysis. A software program called Thermoflex was used for this purpose and the effect of gasifier temperature, air-fuel-ratio, moisture content of the fuel and temperature of pre-heated air on the syngas composition were simulated. The results show that bamboo is a decent gasification feedstock because of its low ash and sulfur content and satisfactory energy value. The simulations reveal that the best gas quality is obtained with the gasifier temperature between 700℃ and 800℃, A/F-ratio of 1.25 - 1.75 and dry basis moisture content between 10% and 15%.展开更多
By coupling the heat transfer equation with semi-global chemical reaction kinetic equations, a onedimensional, unsteady mathematical model is developed to describe the pyrolysis of single biomass pellet in the pyrolys...By coupling the heat transfer equation with semi-global chemical reaction kinetic equations, a onedimensional, unsteady mathematical model is developed to describe the pyrolysis of single biomass pellet in the pyrolysis zone of downdraft gasifier. The simulation results in inert atmosphere and pyrolysis zone agree well with the published experimental results. The pyrolysis of biomass pellets in pyrolysis zone is investigated, and the results show that the estimated convective heat transfer coefficient and emissivity coefficient are suitable. The mean pyrolysis time is 15.22%, shorter than that in inert atmosphere, and the pellet pyrolysis process in pyrolysis zone belongs to fast pyrolysis. Among the pyrolysis products, tar yield is the most, gas the second, and char the least. During pyrolysis, the temperature change near the center is contrary to that near the surface. Pyrolysis gradually moves inwards layer by layer. With the increase of pyrolysis temperature and pellet diameter, the total pyrolysis time, tar yield, char yield and gas yield change in different ways. The height of pyrolysis zone is calculated to be 1.51—3.51 times of the characteristic pellet diameter.展开更多
This paper focuses on a two-dimensional CFD simulation of a downdraft gasifier and a pilot-scale experiment for verification using wood pellet fuel.The simulation work was carried out via the ANSYS-Fluent CFD software...This paper focuses on a two-dimensional CFD simulation of a downdraft gasifier and a pilot-scale experiment for verification using wood pellet fuel.The simulation work was carried out via the ANSYS-Fluent CFD software package with in-house coding via User Defined Function.Three gasification parameters were taken into account in the simulation and validation to achieve highly accurate results;namely,fuel consumption,temperature profile,and syngas composition.After verification of the developed model,the effects of aspect ratios on temperature and syngas composition were investigated.Results from simulation and experimental work indicated that the fuel consumption rate during the steady state gasification experiment was 1.750±0.048 g/s.The average steady state temperature of the experiment was 1240.32±14.20 K.In sum,the fuel consumption and temperature profile during gasification from modeling and experimentation show an error lower than 1.3%.Concentrations of CO,CO2,H2,and CH4 were 20.42 vol%,15.09 vol%,8.02 vol%,and 2.6 vol%,respectively,which are comparable to those of the experiment:20.00 vol%,15.48 vol%,8.00 vol%,and 2.65 vol%.A high concentration of syngas is observed in the outer radial part of the reactor because of the resistive flow of the air inlet and the synthesis gas produced.The average temperatures during the steady state of the gasifier with aspect ratios(H/D)of 1.00,1.38(experiment),and 1.82 were 978.77±11.60,1256.46±9.90,and 1368.94±9.20 K,respectively.The 1.82 aspect ratio reactor has the smallest diameter,therefore the radiative heat transferred from the reactor wall affects the temperature in the reactor.Syngas compositions are comparable.Inverse relationships between the aspect ratios and the syngas LHV,(4.29–4.49 MJ/N m3),cold gas efficiency(29.66%to 31.00%),and carbon conversion(79.59%to 80.87%)are observed.展开更多
The mulberry paper handmade dryer uses downdraft gasifier, which is a continuous hot air dryer. The downdraft gasifier uses charcoal or wood chip as fuel to produce the producer gas for a dryer heat source. Two steps ...The mulberry paper handmade dryer uses downdraft gasifier, which is a continuous hot air dryer. The downdraft gasifier uses charcoal or wood chip as fuel to produce the producer gas for a dryer heat source. Two steps operation of a dryer as follows: The frst was to reduce mulberry paper pulp moisture by an air vacuum pump; the second was a continuous hot air drying process. The optimum condition drying, the capacity of dryer, the fuel consumption, the drying constant (k) and economics analysis were investigated. It was found that the first step could be to reduce mulberry paper pulp moisture content about 25% and the suitable condition drying was 80 ~C drying temperature, 0.04 kg/s air mass flow rate and 0.29 m/min chain conveyor speed, respectively. The capacity of this dryer was 20 sheets per hour. The quality of mulberry paper product was very good (based on the standard of mulberry paper community 41/2546) and the fuel consumption rate was 5 kg/h (charcoal). The drying constant was about 0.532933-0.541367 min~ and the drying constant was a function of drying temperature (T), air mass flow rate (F) and conveyor speed (10 as equation of k(T, F, V) = 0.567494 + 0.000422T- 1.40588F- 0.000205 V (R2 = 0.9254) and the breakeven point of dryer was 0.79 years.展开更多
The study deals with a multi-faceted theoretical approach, symbolic, analytical and numerical, based on the chemical equilibrium assumption, addressed at predicting the performance trends of downdrafi wood-gasificatio...The study deals with a multi-faceted theoretical approach, symbolic, analytical and numerical, based on the chemical equilibrium assumption, addressed at predicting the performance trends of downdrafi wood-gasification processes so to assess the optimal ranges of input parameters, in particular the equivalence ratios, suitable to achieving the highest cold gas efficiencies whilst keeping the more the possible tar-free the produced bio-syngas. The time-steady, zero-dimensional model has been developed within MATLAB (the computing language and interactive environment from Matrix Laboratory) and solved by enforcing the constraints posed by the equilibrium constants in relation to two reactions, gas-water shift and methanation. Particular care is devoted toward verifying the real attainment of the equilibrium condition, as attested by an actual presence of products from the equilibrium reactions together with a zero difference AE between the energy flows entering and exiting the system, an issue often overlooked. With respect to other similar theoretical approaches, the numerical model, assisted by the symbolic counterpart for better interpretation and intrinsic validation of results, shows a distinct advantage in predicting rather accurately the syngas composition for varying gasification temperatures, as attested by cross comparisons with experimental data directly taken on an instrumented, dedicated, small-scale downdraft gasifier operational at DIME/SCL (the Savona Combustion Laboratory of DIME, the Dept. of Mechanical, Energy, Management and Transportation Engineering of Genova University). The behavior of cold gas efficiency clearly points out that, from an energy conversion point of view, the optimal gasification temperatures turn out comprised between 900 ℃ and 1,000 ℃: this range is indeed characterized by the highest concentrations in the energy-rich syngas components CO and H2. For higher temperatures, as induced by higher air-to-fuel ratios, the progressive oxidation of above components, together with increasing nitrogen levels, would decrease the bio-syngas heat values.展开更多
基金jointly supported by the National Key Research and Development Program of China(Grant No.2017YFC1501601)the Key Program of the Ministry of Science and Technology of China(Grant No.2017YFE0107700)the National Natural Science Foundation of China(Grant Nos.41875054,41730961,41730960,and 41775065)
文摘The characteristics of convective-scale downdrafts in the outer core of tropical cyclones in the lower-and upper-layer vertical wind shear(VWS)are investigated based on two high-resolution idealized numerical experiments.Four types of outer-core downdrafts,originating from the lower troposphere,the midtroposphere,the upper level,and the tropopause,respectively,are found.The downdrafts originating from the lower and mid troposphere can penetrate down near the surface,and those originating from the tropopause in upper-layer VWS tend to penetrate more downward than in lower-layer VWS.Downdrafts tend to be located in the more upwind portion of the downshear-right quadrant in lower-layer VWS than in upper-layer VWS.The frequency of downdrafts outside and upwind of the parent updraft increases with the increasing downdraft top height.Vertical momentum budgets indicate that downward-oriented buoyancy due to the evaporational cooling of rainwater and precipitation drag mainly contribute to the occurrence of low-level downdrafts,and the midlevel and upper-level downdrafts originate due to precipitation drag and are strengthened by the downward-oriented,buoyancy-induced perturbation pressure gradient.The processes governing the downdrafts from the tropopause are different between the two experiments.More icy-type particles are produced and transported outward at upper levels in the lower-layer shear experiment,resulting in larger downward-oriented buoyancy due to the sublimational cooling of icy-type particles and contributing to the development/maintenance of the downdraft from the tropopause in that experiment.However,the downwardoriented perturbation pressure gradient leads to the development/maintenance of the downdraft from the tropopause in the upper-layer shear experiment.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC1502103)the National Natural Science Foundation of China(Grant Nos.41430427 and 41705035)+1 种基金the China Scholarship Councilthe Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX17_0876)。
文摘This study investigated the regime-dependent predictability using convective-scale ensemble forecasts initialized with different initial condition perturbations in the Yangtze and Huai River basin(YHRB)of East China.The scale-dependent error growth(ensemble variability)and associated impact on precipitation forecasts(precipitation uncertainties)were quantitatively explored for 13 warm-season convective events that were categorized in terms of strong forcing and weak forcing.The forecast error growth in the strong-forcing regime shows a stepwise increase with increasing spatial scale,while the error growth shows a larger temporal variability with an afternoon peak appearing at smaller scales under weak forcing.This leads to the dissimilarity of precipitation uncertainty and shows a strong correlation between error growth and precipitation across spatial scales.The lateral boundary condition errors exert a quasi-linear increase on error growth with time at the larger scale,suggesting that the large-scale flow could govern the magnitude of error growth and associated precipitation uncertainties,especially for the strong-forcing regime.Further comparisons between scale-based initial error sensitivity experiments show evident scale interaction including upscale transfer of small-scale errors and downscale cascade of larger-scale errors.Specifically,small-scale errors are found to be more sensitive in the weak-forcing regime than those under strong forcing.Meanwhile,larger-scale initial errors are responsible for the error growth after 4 h and produce the precipitation uncertainties at the meso-β-scale.Consequently,these results can be used to explain underdispersion issues in convective-scale ensemble forecasts and provide feedback for ensemble design over the YHRB.
基金supported by the EU FP7 Integrated Project(COPIRIDE)Andrea Jordan was supported for her PhD studies by a National Development Scholarship from the Government of Barbados+1 种基金a research grant from the Barbados Light and Power Company Limited which also supplied fuel cane bagasse for the experimentsAbdulaziz Mohamed was supported for his PhD studies by the Libyan Ministry of Higher Education and Scientific Research
文摘Sulphonated nano-structured micro-porous ion exchange polymers, known as sulphonated PolyHIPE Polymers (s-PHPs) were used in syngas cleaning to investigate their impact on tar composition, concentration and dew point depression during the gasification of fuel cane bagasse as a model biomass. The results showed that the s-PHPs used as a secondary syngas treatment system, was highly effective at adsorbing and reducing the concentration of all class of tars in syngas by 95%-80% which resulted in tar dew point depression from 90 ~C to 73 ~C. It was shown that tars underwent chemical reactions within s-PHPs, indicating that tar diffusion from syngas was driven by chemical potential. It was also observed that s-PHPs also captured ash forming elements from syngas. The use of s-PHPs in gasification as well as in an integrated thermochemical biorefinery technology is discussed since the tar loaded s-PHPs can be used as natural herbicides in the form of soil additives to enhance the biomass growth and crop yield.
文摘Biomass gasification is a thermochemical conversion process that dates back to the 19th century. Nevertheless, designing and operating a gasifier system is not an easy task. Every biomass feedstock has different characteristics and the gasifier needs to be designed according to those qualities. Hence, many laboratory analyses on bamboo were carried out for this study. This study also concentrates on finding the best possible process variables for a bamboo fueled downdraft gasifier through a sensitivity analysis. A software program called Thermoflex was used for this purpose and the effect of gasifier temperature, air-fuel-ratio, moisture content of the fuel and temperature of pre-heated air on the syngas composition were simulated. The results show that bamboo is a decent gasification feedstock because of its low ash and sulfur content and satisfactory energy value. The simulations reveal that the best gas quality is obtained with the gasifier temperature between 700℃ and 800℃, A/F-ratio of 1.25 - 1.75 and dry basis moisture content between 10% and 15%.
文摘By coupling the heat transfer equation with semi-global chemical reaction kinetic equations, a onedimensional, unsteady mathematical model is developed to describe the pyrolysis of single biomass pellet in the pyrolysis zone of downdraft gasifier. The simulation results in inert atmosphere and pyrolysis zone agree well with the published experimental results. The pyrolysis of biomass pellets in pyrolysis zone is investigated, and the results show that the estimated convective heat transfer coefficient and emissivity coefficient are suitable. The mean pyrolysis time is 15.22%, shorter than that in inert atmosphere, and the pellet pyrolysis process in pyrolysis zone belongs to fast pyrolysis. Among the pyrolysis products, tar yield is the most, gas the second, and char the least. During pyrolysis, the temperature change near the center is contrary to that near the surface. Pyrolysis gradually moves inwards layer by layer. With the increase of pyrolysis temperature and pellet diameter, the total pyrolysis time, tar yield, char yield and gas yield change in different ways. The height of pyrolysis zone is calculated to be 1.51—3.51 times of the characteristic pellet diameter.
文摘This paper focuses on a two-dimensional CFD simulation of a downdraft gasifier and a pilot-scale experiment for verification using wood pellet fuel.The simulation work was carried out via the ANSYS-Fluent CFD software package with in-house coding via User Defined Function.Three gasification parameters were taken into account in the simulation and validation to achieve highly accurate results;namely,fuel consumption,temperature profile,and syngas composition.After verification of the developed model,the effects of aspect ratios on temperature and syngas composition were investigated.Results from simulation and experimental work indicated that the fuel consumption rate during the steady state gasification experiment was 1.750±0.048 g/s.The average steady state temperature of the experiment was 1240.32±14.20 K.In sum,the fuel consumption and temperature profile during gasification from modeling and experimentation show an error lower than 1.3%.Concentrations of CO,CO2,H2,and CH4 were 20.42 vol%,15.09 vol%,8.02 vol%,and 2.6 vol%,respectively,which are comparable to those of the experiment:20.00 vol%,15.48 vol%,8.00 vol%,and 2.65 vol%.A high concentration of syngas is observed in the outer radial part of the reactor because of the resistive flow of the air inlet and the synthesis gas produced.The average temperatures during the steady state of the gasifier with aspect ratios(H/D)of 1.00,1.38(experiment),and 1.82 were 978.77±11.60,1256.46±9.90,and 1368.94±9.20 K,respectively.The 1.82 aspect ratio reactor has the smallest diameter,therefore the radiative heat transferred from the reactor wall affects the temperature in the reactor.Syngas compositions are comparable.Inverse relationships between the aspect ratios and the syngas LHV,(4.29–4.49 MJ/N m3),cold gas efficiency(29.66%to 31.00%),and carbon conversion(79.59%to 80.87%)are observed.
文摘The mulberry paper handmade dryer uses downdraft gasifier, which is a continuous hot air dryer. The downdraft gasifier uses charcoal or wood chip as fuel to produce the producer gas for a dryer heat source. Two steps operation of a dryer as follows: The frst was to reduce mulberry paper pulp moisture by an air vacuum pump; the second was a continuous hot air drying process. The optimum condition drying, the capacity of dryer, the fuel consumption, the drying constant (k) and economics analysis were investigated. It was found that the first step could be to reduce mulberry paper pulp moisture content about 25% and the suitable condition drying was 80 ~C drying temperature, 0.04 kg/s air mass flow rate and 0.29 m/min chain conveyor speed, respectively. The capacity of this dryer was 20 sheets per hour. The quality of mulberry paper product was very good (based on the standard of mulberry paper community 41/2546) and the fuel consumption rate was 5 kg/h (charcoal). The drying constant was about 0.532933-0.541367 min~ and the drying constant was a function of drying temperature (T), air mass flow rate (F) and conveyor speed (10 as equation of k(T, F, V) = 0.567494 + 0.000422T- 1.40588F- 0.000205 V (R2 = 0.9254) and the breakeven point of dryer was 0.79 years.
文摘The study deals with a multi-faceted theoretical approach, symbolic, analytical and numerical, based on the chemical equilibrium assumption, addressed at predicting the performance trends of downdrafi wood-gasification processes so to assess the optimal ranges of input parameters, in particular the equivalence ratios, suitable to achieving the highest cold gas efficiencies whilst keeping the more the possible tar-free the produced bio-syngas. The time-steady, zero-dimensional model has been developed within MATLAB (the computing language and interactive environment from Matrix Laboratory) and solved by enforcing the constraints posed by the equilibrium constants in relation to two reactions, gas-water shift and methanation. Particular care is devoted toward verifying the real attainment of the equilibrium condition, as attested by an actual presence of products from the equilibrium reactions together with a zero difference AE between the energy flows entering and exiting the system, an issue often overlooked. With respect to other similar theoretical approaches, the numerical model, assisted by the symbolic counterpart for better interpretation and intrinsic validation of results, shows a distinct advantage in predicting rather accurately the syngas composition for varying gasification temperatures, as attested by cross comparisons with experimental data directly taken on an instrumented, dedicated, small-scale downdraft gasifier operational at DIME/SCL (the Savona Combustion Laboratory of DIME, the Dept. of Mechanical, Energy, Management and Transportation Engineering of Genova University). The behavior of cold gas efficiency clearly points out that, from an energy conversion point of view, the optimal gasification temperatures turn out comprised between 900 ℃ and 1,000 ℃: this range is indeed characterized by the highest concentrations in the energy-rich syngas components CO and H2. For higher temperatures, as induced by higher air-to-fuel ratios, the progressive oxidation of above components, together with increasing nitrogen levels, would decrease the bio-syngas heat values.