In this article, we investigate the exponent of convergence of zeros of solutions for some higher-order homogeneous linear differential equation, and prove that if Ak-1 is the dominant coefficient, then every transcen...In this article, we investigate the exponent of convergence of zeros of solutions for some higher-order homogeneous linear differential equation, and prove that if Ak-1 is the dominant coefficient, then every transcendental solution f(z) of equation……satisfies )λ(f) =∞, where A(f) denotes the exponent of convergence of zeros of the meromor- phic function f(z).展开更多
Let f be a transcendental meromorphic function and g(z)=f(z+c1)+f(z+c2)-2f(z) and g2(z)=f(z+c1)·f(z+c2)-f2(z).The exponents of convergence of zeros of differences g(z),g2(z),g(z)/f(z),and g2(z)/f2(z) are estimate...Let f be a transcendental meromorphic function and g(z)=f(z+c1)+f(z+c2)-2f(z) and g2(z)=f(z+c1)·f(z+c2)-f2(z).The exponents of convergence of zeros of differences g(z),g2(z),g(z)/f(z),and g2(z)/f2(z) are estimated accurately.展开更多
该文主要通过学习了Laine的经典著作《Nevanlinna Theory and Complex Differential Equations》中关于系数A(z)是周期2πi的二阶复微分方程f"(z)+A(z)f(z)=0,λ(f)<∞的相关章节内容,发现了原来文献证明中存在的一个本质错误...该文主要通过学习了Laine的经典著作《Nevanlinna Theory and Complex Differential Equations》中关于系数A(z)是周期2πi的二阶复微分方程f"(z)+A(z)f(z)=0,λ(f)<∞的相关章节内容,发现了原来文献证明中存在的一个本质错误并给予了部分证明更正,同时也给出了一些较原文献中证明错误的结果的稍弱更正结论.展开更多
基金supported by the National Natura Science Foundation of China (11171119)Funding of Tianyuan (11226090)
文摘In this article, we investigate the exponent of convergence of zeros of solutions for some higher-order homogeneous linear differential equation, and prove that if Ak-1 is the dominant coefficient, then every transcendental solution f(z) of equation……satisfies )λ(f) =∞, where A(f) denotes the exponent of convergence of zeros of the meromor- phic function f(z).
基金supported by National Natural Science Foundation of China (Grant No. 10871076)Brain Pool Program of Korean Federation of Science and Technology Societies (Grant No. 072-1-3-0164)
文摘Let f be a transcendental meromorphic function and g(z)=f(z+c1)+f(z+c2)-2f(z) and g2(z)=f(z+c1)·f(z+c2)-f2(z).The exponents of convergence of zeros of differences g(z),g2(z),g(z)/f(z),and g2(z)/f2(z) are estimated accurately.
文摘该文主要通过学习了Laine的经典著作《Nevanlinna Theory and Complex Differential Equations》中关于系数A(z)是周期2πi的二阶复微分方程f"(z)+A(z)f(z)=0,λ(f)<∞的相关章节内容,发现了原来文献证明中存在的一个本质错误并给予了部分证明更正,同时也给出了一些较原文献中证明错误的结果的稍弱更正结论.