In this paper we present a regularized Newton-type method for ill-posed problems, by using the A-smooth regularization to solve the linearized ill-posed equations. For noisy data a proper a posteriori stopping rule is...In this paper we present a regularized Newton-type method for ill-posed problems, by using the A-smooth regularization to solve the linearized ill-posed equations. For noisy data a proper a posteriori stopping rule is used that yields convergence of the Newton iteration to a solution, as the noise level goes to zero, under certain smoothness conditions on the nonlinear operator. Some appropriate assumptions on the closedness and smoothness of the starting value and the solution are shown to lead to optimal convergence rates.展开更多
文摘In this paper we present a regularized Newton-type method for ill-posed problems, by using the A-smooth regularization to solve the linearized ill-posed equations. For noisy data a proper a posteriori stopping rule is used that yields convergence of the Newton iteration to a solution, as the noise level goes to zero, under certain smoothness conditions on the nonlinear operator. Some appropriate assumptions on the closedness and smoothness of the starting value and the solution are shown to lead to optimal convergence rates.