Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challeng...Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challenge, we have designed an on-chip TE0–TE1mode converter based on topologically protected waveguide arrays. The simulation results demonstrate that the converter exhibits a mode coupling efficiency of 93.5% near 1550 nm and can tolerate a relative fabrication error of 30%. Our design approach can be extended to enhance the robustness for other integrated photonic devices, beneficial for future development of optical network systems.展开更多
We introduce an asymmetrical mirror design to a 140 GHz TE_(22,6) quasi-optical(QO) mode converter system to correct the asymmetry of the beam's field distribution caused by the Denisov launcher. By such optimiza...We introduce an asymmetrical mirror design to a 140 GHz TE_(22,6) quasi-optical(QO) mode converter system to correct the asymmetry of the beam's field distribution caused by the Denisov launcher. By such optimization, the output beam with better symmetrical distribution is obtained at the system's output window. Based on the calculated results,the QO mode converter system's performance is already satisfying without iterative phase correction. Scalar and vector correlation coefficients between the output beam and the fundamental Gaussian beam are respectively 98.4% and 93.0%,while the total power transmission efficiency of the converter system is 94.4%. The assistance of optical ray tracing to the design of such QO mode converters is introduced and discussed as well.展开更多
Spatial modedivision multiplexing is emerging as a potential solution to further increasing optical fiber capacity and spectral efficiency. We report a dualmode, dualpolarization transmission method based on modeselec...Spatial modedivision multiplexing is emerging as a potential solution to further increasing optical fiber capacity and spectral efficiency. We report a dualmode, dualpolarization transmission method based on modeselective excitation and detection over a twomode fiber. In particular, we present 107 Gbit/s coherent optical OFDM (COOFDM) transmission over a 4.5 km twomode fiber using LP and LP. modes in which mode separation is performed optically.展开更多
The numerical method of modes analysis and decomposition of the output signal in 3D electromagnetic particle-in-cell simulation is presented. By the method, multiple modes can be resolved at one time using a set of di...The numerical method of modes analysis and decomposition of the output signal in 3D electromagnetic particle-in-cell simulation is presented. By the method, multiple modes can be resolved at one time using a set of diagnostic data, the amplitudes and the phases of the specified modes can all be given separately. Based on the method, the output signals of one X-band tri-bend mode converter used for one high power microwave device, with ionization process in the device due to the strong normal electric field, are analyzed and decomposed.展开更多
Frequency tunability has become a subject of concern in the field of high-power microwave(HPM) source research.However, little information about the corresponding mode converter is available. A tunable circularly-po...Frequency tunability has become a subject of concern in the field of high-power microwave(HPM) source research.However, little information about the corresponding mode converter is available. A tunable circularly-polarized turnstilejunction mode converter(TCTMC) for high-power microwave applications is presented in this paper. The input coaxial TEM mode is transformed into TE(10) mode with different phase delays in four rectangular waveguides and then converted into a circularly-polarized TE(11) circular waveguide mode. Besides, the rods are added to reduce or even eliminate the reflection. The innovations in this study are as follows. The tunning mechanism is added to the mode converter, which can change the effective length of rectangular waveguide and the distance between the rods installed upstream and the closest edge of the rectangular waveguide, thus improving the conversion efficiency and bandwidth. The conversion efficiency of TCTMC can reach above 98% over the frequency range of 1.42 GHz–2.29 GHz, and the frequency tunning bandwidth is about 47%. Significantly, TCTMC can obtain continuous high conversion efficiency of different frequency points with the change of tuning mechanism.展开更多
A novel structure design of micro optic electro mechanical system(MOEMS)gyroscope is presented in this paper.The structure combining surface acoustic wave(SAW)sensor,optical waveguide diffractive component,electro...A novel structure design of micro optic electro mechanical system(MOEMS)gyroscope is presented in this paper.The structure combining surface acoustic wave(SAW)sensor,optical waveguide diffractive component,electro-optical modulator etc.is integrated on a LiNbO3 substrate as the gyroscope for sensing rotating angular velocity,and an optical readout device is added on the traditional SAW typed TE-TM mode converter as the detecting device.The principles of the MOEMS are discussed in the paper,and simulation result shows that there would be apparent advantages of higher precision and stronger anti-vibration capacity.展开更多
Bifurcation and chaos in high-frequency peak current mode Buck converter working in continuous conduction mode(CCM) are studied in this paper. First of all, the two-dimensional discrete mapping model is established....Bifurcation and chaos in high-frequency peak current mode Buck converter working in continuous conduction mode(CCM) are studied in this paper. First of all, the two-dimensional discrete mapping model is established. Next, reference current at the period-doubling point and the border of inductor current are derived. Then, the bifurcation diagrams are drawn with the aid of MATLAB. Meanwhile, circuit simulations are executed with PSIM, and time domain waveforms as well as phase portraits in i_L–v_C plane are plotted with MATLAB on the basis of simulation data. After that, we construct the Jacobian matrix and analyze the stability of the system based on the roots of characteristic equations. Finally, the validity of theoretical analysis has been verified by circuit testing. The simulation and experimental results show that,with the increase of reference current I_(ref), the corresponding switching frequency f is approaching to low-frequency stage continuously when the period-doubling bifurcation happens, leading to the converter tending to be unstable. With the increase of f, the corresponding Irefdecreases when the period-doubling bifurcation occurs, indicating the stable working range of the system becomes smaller.展开更多
Typical metallic waveguide mode converters convert electromagnetic waves from one mode to another mode for some frequency ranges. However, most electromagnetic waves outside of the specified frequency range are reflec...Typical metallic waveguide mode converters convert electromagnetic waves from one mode to another mode for some frequency ranges. However, most electromagnetic waves outside of the specified frequency range are reflected. We report a design for a mode converter which passes the TE<sub>10</sub> mode at a low frequency range and efficiently converts the TE<sub>10</sub> mode to the TE<sub>20</sub> mode at a high frequency range. To gradually shift the mode profile from TE<sub>10</sub> to TE<sub>20</sub>, dielectric rods are placed in a sequence along the waveguide starting near the sidewall and moving to the center of the waveguide with decreasing radius of the rods. This design reduces reflection of electromagnetic waves. Experimental tests demonstrate the efficacy of the design.展开更多
<div style="text-align:justify;"> We present a mode converter and demultiplexer structure for wavelength division multiplexing (WDM) transmission by employing multimode interference (MMI) on Silicon-on...<div style="text-align:justify;"> We present a mode converter and demultiplexer structure for wavelength division multiplexing (WDM) transmission by employing multimode interference (MMI) on Silicon-on-Insulator (SOI) platform. The mode converter and demultiplexer have a compact size of less than 2.7 μm × 43.7 μm. Moreover, the crosstalk between neighboring wavelength channel within C band (1530 nm to 1570 nm) can be reduced by utilizing the tapered phase shifter cascaded with MMI. The simulated results indicate that this structure has a low insertion loss of less than 1 dB, a low crosstalk of better than ?15 dB and a relatively high fabrication tolerance of ~10 nm. Such structure may find many potential applications in silicon photonic integrated devices. </div>展开更多
This document addresses an exhaustive standalone Photovoltaic (PV) energy harvesting system considering two crucial issues: system efficiency and cost effectiveness. It contributes a compact resolution with a combined...This document addresses an exhaustive standalone Photovoltaic (PV) energy harvesting system considering two crucial issues: system efficiency and cost effectiveness. It contributes a compact resolution with a combined feature of Dual Mode-Multiple Output (DMMO) associated with input ripple reduction technique. Control strategy incorporates with aspect of Maximum Power Point Tracking (MPPT) and output voltage levels regulation. A theoretical analysis is conducted to evaluate the effect of ripple current on PV power. Proposed dual mode converter achieves efficiency of 98.36% and 97.76% respectively for mode-1 and mode-2 operation. However, simulation is performed applying MATLAB/SIMULINK tools to analyze the feasibility of the recommended system.展开更多
In this paper, we present a mode-selective coupler based on a dual-core all-solid photonic bandgap fiber(AS-PBGF). Because they are all-solid, AS-PBGF-based mode converters are easier to splice to other fibers than ...In this paper, we present a mode-selective coupler based on a dual-core all-solid photonic bandgap fiber(AS-PBGF). Because they are all-solid, AS-PBGF-based mode converters are easier to splice to other fibers than those based on air-hole photonic crystal fibers. Mode conversions between the LP01 and LP11modes, LP01 and LP21modes, and LP01 and LP02modes are obtained at the wavelength λ=1550 nm. The 3 dB wavelength bandwidth of these mode converters are 47.8,20.3, and 20.3 nm, respectively.展开更多
Broadband mode converters are essential devices for space-division and wavelength-division multiplexing systems.There are great challenges in the generation of higher-order modes above the third order with low loss an...Broadband mode converters are essential devices for space-division and wavelength-division multiplexing systems.There are great challenges in the generation of higher-order modes above the third order with low loss and high mode purity employing all-fiber devices.In this paper,an all-fiber LP_(41)mode converter is proposed and fabricated by tapering a nine-core single-mode fiber bundle.Experimental results indicate that this all-fiber LP_(41)mode converter is low-loss,high-purity,and ultrabroadband.The insertion loss is less than 0.4 dB.The purity of odd LP_(41)at 1310 nm is 95.09%,and the operating bandwidth exceeds 280 nm.展开更多
Acousto-optic interaction can be used for ultrafast optical field control in passively mode-locked fiber lasers.Here,we propose the use of an intracavity acousto-optic mode converter (AOMC) with combination of a few-m...Acousto-optic interaction can be used for ultrafast optical field control in passively mode-locked fiber lasers.Here,we propose the use of an intracavity acousto-optic mode converter (AOMC) with combination of a few-mode fiber Bragg gratings (FM-FBG) to achieve narrow linewidth mode-locked pulse output with switchable transverse mode and wavelength in a ring fiber laser.Due to the selectivity of the FM-FBG to the input mode,the output mode and wavelength can be adjusted in the mode-locked fiber laser based on a semiconductor saturable absorption mirror.In experiments,by adjusting the acoustic frequency imposed in the AOMC,the wavelength of mode-locked pulses was switched from 1551.52 nm to 1550.21 nm,retaining the repetition rate of 12.68 MHz.At the same time,the mode conversion from the LP;to the LP;mode in the FM-FBG transmission port was achieved.This laser may find application in mode-division multiplexing systems.展开更多
Reaction flywheel is a significant actuator for satellites' attitude control. To improve output torque and rotational speed accuracy for reaction flywheel, this paper reviews the modeling and control approaches of DC...Reaction flywheel is a significant actuator for satellites' attitude control. To improve output torque and rotational speed accuracy for reaction flywheel, this paper reviews the modeling and control approaches of DC-DC converters and presents an application of the variable structure system theory with associated sliding regimes. Firstly, the topology of reaction flywheel is constructed. The small signal linearization process for a buck converter is illustrated. Then, based on the state averaging models and reaching qualification expressed by the Lee derivative, the general results of the sliding mode control (SMC) are analyzed. The analytical equivalent control laws for reaction flywheel are deduced detailedly by selecting various sliding surfaces at electromotion, energy consumption braking, reverse connection braking stages. Finally, numerical and experimental examples are presented for illustrative purposes. The results demonstrate that favorable agreement is established between the simulations and experiments. The proposed control strategy achieves preferable rotational speed regulation, strong rejection of modest disturbances, and high-precision output torque and rotational speed tracking abilities.展开更多
Mode-division multiplexing(MDM) has become an increasingly important technology to further increase the transmission capacity of both optical-fiber-based communication networks, data centers and waveguidebased on-ch...Mode-division multiplexing(MDM) has become an increasingly important technology to further increase the transmission capacity of both optical-fiber-based communication networks, data centers and waveguidebased on-chip optical interconnects. Mode manipulation devices are indispensable in MDM system and have been widely studied in fiber, planar lightwave circuits, and silicon and InP based platforms. InP-based integration technology provides the easiest accessibility to bring together the functions of laser sources, modulators, and mode manipulation devices into a single chip, making it a promising solution for fully integrated few-mode transmitters in the MDM system. This paper reviews the recent progress in InP-based mode manipulation devices, including the few-mode converters, multiplexers, demultiplexers, and transmitters. The working principle, structures, and performance of InP-based few-mode devices are discussed.展开更多
Six high-index cores are embedded around the central solid core of the photonic crystal fiber to form a fiber embedded photonic crystal fiber (FEPCF), which is investigated based on the beam propagation method. In t...Six high-index cores are embedded around the central solid core of the photonic crystal fiber to form a fiber embedded photonic crystal fiber (FEPCF), which is investigated based on the beam propagation method. In this structure, the Gaussian mode could be transferred to the ring mode. So FEPCF could used as a mode convertor.展开更多
The transient response analysis of the SLED based on the equivalent circuit is described. Then, a C-band SLED using TE0,1,15 mode cylindrical cavity with TE10-TE01 mode converter has been designed. According to the ma...The transient response analysis of the SLED based on the equivalent circuit is described. Then, a C-band SLED using TE0,1,15 mode cylindrical cavity with TE10-TE01 mode converter has been designed. According to the main RF parameters of the accelerator, the coupling coefficient is optimized to obtain the maximum multiplication factor. The key components of the pulse compressor include a 3 dB directional coupler, a TE10-TE01 mode converter, and a cylindrical cavity, which are simulated and optimized using 3D electromagnetic field simulation software. In addition, the function defining the relation between the coupling factor and aperture size is derived by a mathematical fitting method.展开更多
A frequency domain analysis is presented to determine the performance characteristics of a tunable all-optical wavelength converter using four-wave mixing (FWM) in a single mode fiber (SMF) around the zero dispersion ...A frequency domain analysis is presented to determine the performance characteristics of a tunable all-optical wavelength converter using four-wave mixing (FWM) in a single mode fiber (SMF) around the zero dispersion wavelength using two pump lasers. The output converted signal power as well as efficiency evaluated at a bit rate of 10 Gb/s show that the signal power is substantially higher at lower values of wavelength separation.展开更多
This paper presents a programmable gain amplifier(PGA) circuit with a digitally assisted DC offset cancellation(DCOC) scheme for a direct conversion WLAN receiver.Implemented in a standard 0.13-μm CMOS process,th...This paper presents a programmable gain amplifier(PGA) circuit with a digitally assisted DC offset cancellation(DCOC) scheme for a direct conversion WLAN receiver.Implemented in a standard 0.13-μm CMOS process,the PGA occupies 0.39 mm2 die area and dissipates 6.5 mW power from a 1.2 V power supply.By using a single loop single digital-to-analog converter(DAC) mixed signal DC offset cancellation topology,the minimum DCOC settling time achieved is as short as 1.6μs with the PGA gain ranging from -8 to 54 dB in a 2 dB step.The DCOC loop utilizes a segmented DAC structure to lower the design complexity without sacrificing accuracy and a digital control algorithm to dynamically set the DCOC loop to fast or normal response mode,making the PGA circuit in compliance with the targeted WLAN specifications.展开更多
To improve the power sequencing performance of the system-on-a-chip(SOC),a novel embedded soft-start circuit is presented.A seamless soft-start reference voltage is obtained with 7 bits DAC,which can not only restra...To improve the power sequencing performance of the system-on-a-chip(SOC),a novel embedded soft-start circuit is presented.A seamless soft-start reference voltage is obtained with 7 bits DAC,which can not only restrain the turning point overshoot,but also improve the output accuracy and the poor loading capability,reduce the pin number and save PCB area.The whole DC-DC converter has been fabricated in a 0.35μm CMOS process.The measurement results show that the chip starts up successfully with 250μs soft-start time under conditions of 400 kHz switching frequency,2.5 V DC-DC output and 1.8 V LDO output.Stable operation after soft-start is also shown.展开更多
基金Project supported by the National Undergraduate Training Projects for Innovation and Entrepreneurship (Grant No. 5003182007)the National Natural Science Foundation of China (Grant No. 12074137)+1 种基金the National Key Research and Development Project of China (Grant No. 2021YFB2801903)the Natural Science Foundation from the Science,Technology,and Innovation Commission of Shenzhen Municipality (Grant No. JCYJ20220530161010023)。
文摘Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challenge, we have designed an on-chip TE0–TE1mode converter based on topologically protected waveguide arrays. The simulation results demonstrate that the converter exhibits a mode coupling efficiency of 93.5% near 1550 nm and can tolerate a relative fabrication error of 30%. Our design approach can be extended to enhance the robustness for other integrated photonic devices, beneficial for future development of optical network systems.
基金Project supported by the National Natural Science Foundation of China(Grant No.61671032)
文摘We introduce an asymmetrical mirror design to a 140 GHz TE_(22,6) quasi-optical(QO) mode converter system to correct the asymmetry of the beam's field distribution caused by the Denisov launcher. By such optimization, the output beam with better symmetrical distribution is obtained at the system's output window. Based on the calculated results,the QO mode converter system's performance is already satisfying without iterative phase correction. Scalar and vector correlation coefficients between the output beam and the fundamental Gaussian beam are respectively 98.4% and 93.0%,while the total power transmission efficiency of the converter system is 94.4%. The assistance of optical ray tracing to the design of such QO mode converters is introduced and discussed as well.
文摘Spatial modedivision multiplexing is emerging as a potential solution to further increasing optical fiber capacity and spectral efficiency. We report a dualmode, dualpolarization transmission method based on modeselective excitation and detection over a twomode fiber. In particular, we present 107 Gbit/s coherent optical OFDM (COOFDM) transmission over a 4.5 km twomode fiber using LP and LP. modes in which mode separation is performed optically.
基金Project supported by the fund of the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Grant No. SKLIPR1908).
文摘The numerical method of modes analysis and decomposition of the output signal in 3D electromagnetic particle-in-cell simulation is presented. By the method, multiple modes can be resolved at one time using a set of diagnostic data, the amplitudes and the phases of the specified modes can all be given separately. Based on the method, the output signals of one X-band tri-bend mode converter used for one high power microwave device, with ionization process in the device due to the strong normal electric field, are analyzed and decomposed.
基金supported by the National Natural Science Foundation of China(Grant No.61671457)
文摘Frequency tunability has become a subject of concern in the field of high-power microwave(HPM) source research.However, little information about the corresponding mode converter is available. A tunable circularly-polarized turnstilejunction mode converter(TCTMC) for high-power microwave applications is presented in this paper. The input coaxial TEM mode is transformed into TE(10) mode with different phase delays in four rectangular waveguides and then converted into a circularly-polarized TE(11) circular waveguide mode. Besides, the rods are added to reduce or even eliminate the reflection. The innovations in this study are as follows. The tunning mechanism is added to the mode converter, which can change the effective length of rectangular waveguide and the distance between the rods installed upstream and the closest edge of the rectangular waveguide, thus improving the conversion efficiency and bandwidth. The conversion efficiency of TCTMC can reach above 98% over the frequency range of 1.42 GHz–2.29 GHz, and the frequency tunning bandwidth is about 47%. Significantly, TCTMC can obtain continuous high conversion efficiency of different frequency points with the change of tuning mechanism.
基金Sponsored by Postgraduate Science and Technology Innovation Fund of BIT(Rank A)
文摘A novel structure design of micro optic electro mechanical system(MOEMS)gyroscope is presented in this paper.The structure combining surface acoustic wave(SAW)sensor,optical waveguide diffractive component,electro-optical modulator etc.is integrated on a LiNbO3 substrate as the gyroscope for sensing rotating angular velocity,and an optical readout device is added on the traditional SAW typed TE-TM mode converter as the detecting device.The principles of the MOEMS are discussed in the paper,and simulation result shows that there would be apparent advantages of higher precision and stronger anti-vibration capacity.
基金Project supported by the National Natural Science Foundation of China(Grant No.61376029)the Fundamental Research Funds for the Central Universities,Chinathe College Graduate Research and Innovation Program of Jiangsu Province,China(Grant No.SJLX15 0092)
文摘Bifurcation and chaos in high-frequency peak current mode Buck converter working in continuous conduction mode(CCM) are studied in this paper. First of all, the two-dimensional discrete mapping model is established. Next, reference current at the period-doubling point and the border of inductor current are derived. Then, the bifurcation diagrams are drawn with the aid of MATLAB. Meanwhile, circuit simulations are executed with PSIM, and time domain waveforms as well as phase portraits in i_L–v_C plane are plotted with MATLAB on the basis of simulation data. After that, we construct the Jacobian matrix and analyze the stability of the system based on the roots of characteristic equations. Finally, the validity of theoretical analysis has been verified by circuit testing. The simulation and experimental results show that,with the increase of reference current I_(ref), the corresponding switching frequency f is approaching to low-frequency stage continuously when the period-doubling bifurcation happens, leading to the converter tending to be unstable. With the increase of f, the corresponding Irefdecreases when the period-doubling bifurcation occurs, indicating the stable working range of the system becomes smaller.
文摘Typical metallic waveguide mode converters convert electromagnetic waves from one mode to another mode for some frequency ranges. However, most electromagnetic waves outside of the specified frequency range are reflected. We report a design for a mode converter which passes the TE<sub>10</sub> mode at a low frequency range and efficiently converts the TE<sub>10</sub> mode to the TE<sub>20</sub> mode at a high frequency range. To gradually shift the mode profile from TE<sub>10</sub> to TE<sub>20</sub>, dielectric rods are placed in a sequence along the waveguide starting near the sidewall and moving to the center of the waveguide with decreasing radius of the rods. This design reduces reflection of electromagnetic waves. Experimental tests demonstrate the efficacy of the design.
文摘<div style="text-align:justify;"> We present a mode converter and demultiplexer structure for wavelength division multiplexing (WDM) transmission by employing multimode interference (MMI) on Silicon-on-Insulator (SOI) platform. The mode converter and demultiplexer have a compact size of less than 2.7 μm × 43.7 μm. Moreover, the crosstalk between neighboring wavelength channel within C band (1530 nm to 1570 nm) can be reduced by utilizing the tapered phase shifter cascaded with MMI. The simulated results indicate that this structure has a low insertion loss of less than 1 dB, a low crosstalk of better than ?15 dB and a relatively high fabrication tolerance of ~10 nm. Such structure may find many potential applications in silicon photonic integrated devices. </div>
文摘This document addresses an exhaustive standalone Photovoltaic (PV) energy harvesting system considering two crucial issues: system efficiency and cost effectiveness. It contributes a compact resolution with a combined feature of Dual Mode-Multiple Output (DMMO) associated with input ripple reduction technique. Control strategy incorporates with aspect of Maximum Power Point Tracking (MPPT) and output voltage levels regulation. A theoretical analysis is conducted to evaluate the effect of ripple current on PV power. Proposed dual mode converter achieves efficiency of 98.36% and 97.76% respectively for mode-1 and mode-2 operation. However, simulation is performed applying MATLAB/SIMULINK tools to analyze the feasibility of the recommended system.
基金the National Basic Research Program of China (973 Program) under Grant 2014CB340102the National Natural Science Foundation under Grants 61271191 and 61271193the Fund of State Key Laboratory of Information Photonics and Optical Communications
文摘In this paper, we present a mode-selective coupler based on a dual-core all-solid photonic bandgap fiber(AS-PBGF). Because they are all-solid, AS-PBGF-based mode converters are easier to splice to other fibers than those based on air-hole photonic crystal fibers. Mode conversions between the LP01 and LP11modes, LP01 and LP21modes, and LP01 and LP02modes are obtained at the wavelength λ=1550 nm. The 3 dB wavelength bandwidth of these mode converters are 47.8,20.3, and 20.3 nm, respectively.
基金supported by the National Key Research and Development Program of China(No.2018YFB1801802)the National Natural Science Foundation of China(Nos.61835006 and 62375143)。
文摘Broadband mode converters are essential devices for space-division and wavelength-division multiplexing systems.There are great challenges in the generation of higher-order modes above the third order with low loss and high mode purity employing all-fiber devices.In this paper,an all-fiber LP_(41)mode converter is proposed and fabricated by tapering a nine-core single-mode fiber bundle.Experimental results indicate that this all-fiber LP_(41)mode converter is low-loss,high-purity,and ultrabroadband.The insertion loss is less than 0.4 dB.The purity of odd LP_(41)at 1310 nm is 95.09%,and the operating bandwidth exceeds 280 nm.
基金This work was partially supported by the National Natural Science Foundation of China(Nos.91950105 and 62175116)the 1311 Talent Plan of Nanjing University of Posts and Telecommunications。
文摘Acousto-optic interaction can be used for ultrafast optical field control in passively mode-locked fiber lasers.Here,we propose the use of an intracavity acousto-optic mode converter (AOMC) with combination of a few-mode fiber Bragg gratings (FM-FBG) to achieve narrow linewidth mode-locked pulse output with switchable transverse mode and wavelength in a ring fiber laser.Due to the selectivity of the FM-FBG to the input mode,the output mode and wavelength can be adjusted in the mode-locked fiber laser based on a semiconductor saturable absorption mirror.In experiments,by adjusting the acoustic frequency imposed in the AOMC,the wavelength of mode-locked pulses was switched from 1551.52 nm to 1550.21 nm,retaining the repetition rate of 12.68 MHz.At the same time,the mode conversion from the LP;to the LP;mode in the FM-FBG transmission port was achieved.This laser may find application in mode-division multiplexing systems.
基金supported by the National Natural Science Foundation of China(No.61121003)
文摘Reaction flywheel is a significant actuator for satellites' attitude control. To improve output torque and rotational speed accuracy for reaction flywheel, this paper reviews the modeling and control approaches of DC-DC converters and presents an application of the variable structure system theory with associated sliding regimes. Firstly, the topology of reaction flywheel is constructed. The small signal linearization process for a buck converter is illustrated. Then, based on the state averaging models and reaching qualification expressed by the Lee derivative, the general results of the sliding mode control (SMC) are analyzed. The analytical equivalent control laws for reaction flywheel are deduced detailedly by selecting various sliding surfaces at electromotion, energy consumption braking, reverse connection braking stages. Finally, numerical and experimental examples are presented for illustrative purposes. The results demonstrate that favorable agreement is established between the simulations and experiments. The proposed control strategy achieves preferable rotational speed regulation, strong rejection of modest disturbances, and high-precision output torque and rotational speed tracking abilities.
基金Project supported by the State Key Development Program for Basic Research of China(No.2014CB340102)the National Key Research&Development(R&D)Plan(No.2016YFB0402301)the National Natural Science Foundation of China(No.61335009)
文摘Mode-division multiplexing(MDM) has become an increasingly important technology to further increase the transmission capacity of both optical-fiber-based communication networks, data centers and waveguidebased on-chip optical interconnects. Mode manipulation devices are indispensable in MDM system and have been widely studied in fiber, planar lightwave circuits, and silicon and InP based platforms. InP-based integration technology provides the easiest accessibility to bring together the functions of laser sources, modulators, and mode manipulation devices into a single chip, making it a promising solution for fully integrated few-mode transmitters in the MDM system. This paper reviews the recent progress in InP-based mode manipulation devices, including the few-mode converters, multiplexers, demultiplexers, and transmitters. The working principle, structures, and performance of InP-based few-mode devices are discussed.
基金suopported by the Heilongjiang Grant for Young Leading Teachers (No.1151G071)the Harbin Technology Foundation for Oversee Returnee (No.2007RFLXG007)
文摘Six high-index cores are embedded around the central solid core of the photonic crystal fiber to form a fiber embedded photonic crystal fiber (FEPCF), which is investigated based on the beam propagation method. In this structure, the Gaussian mode could be transferred to the ring mode. So FEPCF could used as a mode convertor.
文摘The transient response analysis of the SLED based on the equivalent circuit is described. Then, a C-band SLED using TE0,1,15 mode cylindrical cavity with TE10-TE01 mode converter has been designed. According to the main RF parameters of the accelerator, the coupling coefficient is optimized to obtain the maximum multiplication factor. The key components of the pulse compressor include a 3 dB directional coupler, a TE10-TE01 mode converter, and a cylindrical cavity, which are simulated and optimized using 3D electromagnetic field simulation software. In addition, the function defining the relation between the coupling factor and aperture size is derived by a mathematical fitting method.
文摘A frequency domain analysis is presented to determine the performance characteristics of a tunable all-optical wavelength converter using four-wave mixing (FWM) in a single mode fiber (SMF) around the zero dispersion wavelength using two pump lasers. The output converted signal power as well as efficiency evaluated at a bit rate of 10 Gb/s show that the signal power is substantially higher at lower values of wavelength separation.
文摘This paper presents a programmable gain amplifier(PGA) circuit with a digitally assisted DC offset cancellation(DCOC) scheme for a direct conversion WLAN receiver.Implemented in a standard 0.13-μm CMOS process,the PGA occupies 0.39 mm2 die area and dissipates 6.5 mW power from a 1.2 V power supply.By using a single loop single digital-to-analog converter(DAC) mixed signal DC offset cancellation topology,the minimum DCOC settling time achieved is as short as 1.6μs with the PGA gain ranging from -8 to 54 dB in a 2 dB step.The DCOC loop utilizes a segmented DAC structure to lower the design complexity without sacrificing accuracy and a digital control algorithm to dynamically set the DCOC loop to fast or normal response mode,making the PGA circuit in compliance with the targeted WLAN specifications.
文摘To improve the power sequencing performance of the system-on-a-chip(SOC),a novel embedded soft-start circuit is presented.A seamless soft-start reference voltage is obtained with 7 bits DAC,which can not only restrain the turning point overshoot,but also improve the output accuracy and the poor loading capability,reduce the pin number and save PCB area.The whole DC-DC converter has been fabricated in a 0.35μm CMOS process.The measurement results show that the chip starts up successfully with 250μs soft-start time under conditions of 400 kHz switching frequency,2.5 V DC-DC output and 1.8 V LDO output.Stable operation after soft-start is also shown.