In this paper, by an axiomatic approach, we propose the concepts of comonotonic subadditivity and comonotonic convex risk measures for portfolios, which are extensions of the ones introduced by Song and Yan (2006). ...In this paper, by an axiomatic approach, we propose the concepts of comonotonic subadditivity and comonotonic convex risk measures for portfolios, which are extensions of the ones introduced by Song and Yan (2006). Representation results for these new introduced risk measures for portfolios are given in terms of Choquet integrals. Links of these newly introduced risk measures to multi-period comonotonic risk measures are represented. Finally, applications of the newly introduced comonotonic coherent risk measures to capital allocations are provided.展开更多
In this paper, we study the optimal investment and proportional reinsurance strategy for an insurer in a hidden Markov regime-switching environment. A risk-based approach is considered, where the insurer aims at selec...In this paper, we study the optimal investment and proportional reinsurance strategy for an insurer in a hidden Markov regime-switching environment. A risk-based approach is considered, where the insurer aims at selecting an optimal strategy with a view to minimizing the risk described by a convex risk measure of its terminal wealth. We solve the problem in two steps. First, we employ the filtering theory to turn the optimization problem with partial observations into one with complete observations. Second, by using BSDEs with jumps, we solve the problem with complete observations.展开更多
For the class of(partially specified)internal risk factor models we establish strongly simplified supermodular ordering results in comparison to the case of general risk factor models.This allows us to derive meaningf...For the class of(partially specified)internal risk factor models we establish strongly simplified supermodular ordering results in comparison to the case of general risk factor models.This allows us to derive meaningful and improved risk bounds for the joint portfolio in risk factor models with dependence information given by constrained specification sets for the copulas of the risk components and the systemic risk factor.The proof of our main comparison result is not standard.It is based on grid copula approximation of upper products of copulas and on the theory of mass transfers.An application to real market data shows considerable improvement over the standard method.展开更多
基金Supported by the National Natural Science Foundation of China(11371284)the Natural Science Foundation of Henan Province(14B110037)
文摘In this paper, by an axiomatic approach, we propose the concepts of comonotonic subadditivity and comonotonic convex risk measures for portfolios, which are extensions of the ones introduced by Song and Yan (2006). Representation results for these new introduced risk measures for portfolios are given in terms of Choquet integrals. Links of these newly introduced risk measures to multi-period comonotonic risk measures are represented. Finally, applications of the newly introduced comonotonic coherent risk measures to capital allocations are provided.
基金Supported by the National Natural Science Foundation of China(No.11371284)the Fundamental Research Funds for the Central Universities(WUT:2015IVA066)
文摘In this paper, we study the optimal investment and proportional reinsurance strategy for an insurer in a hidden Markov regime-switching environment. A risk-based approach is considered, where the insurer aims at selecting an optimal strategy with a view to minimizing the risk described by a convex risk measure of its terminal wealth. We solve the problem in two steps. First, we employ the filtering theory to turn the optimization problem with partial observations into one with complete observations. Second, by using BSDEs with jumps, we solve the problem with complete observations.
文摘For the class of(partially specified)internal risk factor models we establish strongly simplified supermodular ordering results in comparison to the case of general risk factor models.This allows us to derive meaningful and improved risk bounds for the joint portfolio in risk factor models with dependence information given by constrained specification sets for the copulas of the risk components and the systemic risk factor.The proof of our main comparison result is not standard.It is based on grid copula approximation of upper products of copulas and on the theory of mass transfers.An application to real market data shows considerable improvement over the standard method.