The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-eleme...The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.展开更多
The absorbing boundary is the key in numerical simulation of borehole radar.Perfect match layer(PML) was chosen as the absorbing boundary in numerical simulation of GPR.But CPML(convolutional perfect match layer) appr...The absorbing boundary is the key in numerical simulation of borehole radar.Perfect match layer(PML) was chosen as the absorbing boundary in numerical simulation of GPR.But CPML(convolutional perfect match layer) approach that we have chosen has the advantage of being media independent.Beginning with the Maxwell equations in a two-dimensional structure,numerical formulas of finite-difference time-domain(FDTD) method with CPML boundary condition for transverse electric(TE) or transverse magnetic(TM) wave are presented in details.Also,there are three models for borehole-GPR simulation.By analyzing the simulation results,the features of targets in GPR are obtained,which can provide a better interpretation of real radar data.The results show that CPML is well suited for the simulation of borehole-GPR.展开更多
A convolution perfectly matched layer(CPML)can efficiently absorb boundary reflection in numerical simulation.However,the CPML is suitable for the first-order elastic wave equation and is difficult to apply directly t...A convolution perfectly matched layer(CPML)can efficiently absorb boundary reflection in numerical simulation.However,the CPML is suitable for the first-order elastic wave equation and is difficult to apply directly to the second-order elastic wave equation.In view of this,based on the first-order CPML absorbing boundary condition,we propose a new CPML(NCPML)boundary which can be directly applied to the second-order wave equation.We first systematically extend the first-order CPML technique into second-order wave equations,neglecting the space-varying characteristics of the partial damping coefficient in the complex-frequency domain,avoiding the generation of convolution in the time domain.We then transform the technique back to the time domain through the inverse Fourier transform.Numerical simulation indicates that the space-varying characteristics of the attenuation factor have little influence on the absorption effect and increase the memory at the same time.A number of numerical examples show that the NCPML proposed in this study is effective in simulating elastic wave propagation,and this algorithm is more efficient and requires less memory allocation than the conventional PML absorbing boundary.展开更多
A new computational algorithm is introduced for solving scattering problem in periodic structure. The PML technique is used to deal with the difficulty on truncating the unbounded domain while the DSC algorithm is uti...A new computational algorithm is introduced for solving scattering problem in periodic structure. The PML technique is used to deal with the difficulty on truncating the unbounded domain while the DSC algorithm is utilized for the spatial discretization. The present study reveals that the method is efficient for solving the problem.展开更多
The theory of perfectly matched layer (PML) artificial boundary condition (ABC), which is characterized by absorption any wave motions with arbitrary frequency and arbitrarily incident angle, is introduced. The co...The theory of perfectly matched layer (PML) artificial boundary condition (ABC), which is characterized by absorption any wave motions with arbitrary frequency and arbitrarily incident angle, is introduced. The construction process of PML boundary based on elastodynamic partial differential equation (PDE) system is developed. Combining with velocity-stress hybrid finite element formulation, the applicability of PML boundary is investigated and the numerical reflection of PML boundary is estimated. The reflectivity of PML and multi-transmitting formula (MTF) boundary is then compared based on body wave and surface wave simulations. The results show that although PML boundary yields some reflection, its absorption performance is superior to MTF boundary in the numerical simulations of near-fault wave propagation, especially in comer and large angle grazing incidence situations. The PML boundary does not arise any unstable phenomenon and the stability of PML boundary is better than MTF boundary in hybrid finite element method. For a specified problem and analysis tolerance, the computational efficiency of PML boundary is only a little lower than MTF boundary.展开更多
The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this p...The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this paper, the method is developed to extend the NPML to simulating elastic wave propagation in poroelastic media. Biot's equations are discretized and approximated to a staggered-grid by applying a fourth-order accurate central difference in space and a second-order accurate central difference in time. A cylindrical twolayer seismic model and a borehole model are chosen to validate the effectiveness of the NPML. The results show that the numerical solutions agree well with the solutions of the discrete wavenumber (DW) method.展开更多
Reverse-time migration in finite space requires effective boundary processing technology to eliminate the artificial truncation boundary effect in the migration result.On the basis of the elastic velocity-stress equat...Reverse-time migration in finite space requires effective boundary processing technology to eliminate the artificial truncation boundary effect in the migration result.On the basis of the elastic velocity-stress equations in vertical transversely isotropic media and the idea of the conventional split perfectly matched layer(PML),the PML wave equations in reverse-time migration are derived in this paper and then the high order staggered grid discrete schemes are subsequently given.Aiming at the"reflections"from the boundary to the computational domain,as well as the effect of seismic event's abrupt changes at the two ends of the seismic array,the PML arrangement in reverse-time migration is given.The synthetic and real elastic,prestack,multi-component,reverse-time depth migration results demonstrate that this method has much better absorbing effects than other methods and the joint migration produces good imaging results.展开更多
The key problem of finite-difference time-domain (FD-TD) method is the skillful application of special conditions on the boundaries of the computational domain. A new technique named Perfectly Matched Layer(PML) yield...The key problem of finite-difference time-domain (FD-TD) method is the skillful application of special conditions on the boundaries of the computational domain. A new technique named Perfectly Matched Layer(PML) yields a robust Absorbing Boundary Condition(ABC) independent of the angle of incidence and the frequency of outgoing waves. In this paper, the principle of the PML technique is briefly presented. Then some problems in the application and their settlements are discussed emphatically. Finally three numerical tests and a measured result are devoted to examine the accuracy and effectiveness of this approach.展开更多
Parallel acceleration of convolution perfectly matched layer (CPML) algorithm suffers from massive division operation which is widely accepted as one of the most expensive operations for the equipment such as graphi...Parallel acceleration of convolution perfectly matched layer (CPML) algorithm suffers from massive division operation which is widely accepted as one of the most expensive operations for the equipment such as graphic processing unit (GPU), field programmable gate array (FPGA) etc. In pursuit of higher efficiency and lower power consumption, this article revisited the CPML theory and proposed a new fast division-free parallel CPML structure. By optimally rearranging the CPML inner iteration process, all the division operators can be eliminated and replaced by recalculating the related field updating coefficients offline. Experiments show that the proposed division-free structure can save more than 50% arithmetic instructions and 25% execution time of the traditional parallel CPML structure without any accuracy loss.展开更多
In this paper,we study the two-dimensional Helmholtz scattering problem by a locally perturbed line with impedance boundary condition.Different from the problem with Dirichlet boundary condition,the Green function of ...In this paper,we study the two-dimensional Helmholtz scattering problem by a locally perturbed line with impedance boundary condition.Different from the problem with Dirichlet boundary condition,the Green function of the Helmholtz equation with impedance boundary condition becomes very complicated and comprises surface waves along the locally perturbed line.A uniaxial perfectly matched layer(UPML)method is proposed to truncate the half plane into a bounded computational domain.The main contribution of this paper is to prove the well-posedness of the PML problem and the exponential convergence of the approximate solution to the exact solution as either the thickness or the medium parameter of PML increases.展开更多
As an efficient artificial truncating boundary condition, conformal perfectly matched layer (CPML) is a kind of multilayer anisotropic absorbing media. To reduce computing effort of CPML, this article proposes a layer...As an efficient artificial truncating boundary condition, conformal perfectly matched layer (CPML) is a kind of multilayer anisotropic absorbing media. To reduce computing effort of CPML, this article proposes a layer-oriented element integration algorithm. In this algorithm, the relative dielectric constant and permeability are considered as constants for each the very thin monolayer of CPML, and the element integration of multilayer along the normal direction is substituted by the element integration of m...展开更多
从TTI介质一阶应力—速度方程出发,利用旋转交错网格高阶有限差分方法,将非分裂完全匹配层(Non-spliting Perfect Match Layer,简称NPML)边界吸收条件和自由边界条件相结合形成组合边界条件,进行了二维三分量TTI介质弹性波场数值模拟。...从TTI介质一阶应力—速度方程出发,利用旋转交错网格高阶有限差分方法,将非分裂完全匹配层(Non-spliting Perfect Match Layer,简称NPML)边界吸收条件和自由边界条件相结合形成组合边界条件,进行了二维三分量TTI介质弹性波场数值模拟。波场快照和炮记录表明:①采用非分裂式边界条件能较好地消除近地表大角度入射波和瞬逝波;②组合边界条件与NPML边界吸收条件相比,不仅有效地压制了边界反射,同时实现了对自由地表的模拟,获得了丰富的全波场信息,其中在地表产生的PS转换横波作为一种特殊的横波现象,可为近地表结构调查以及多波波场分析等提供有益信息;③自由地表引起的面波以及多次波对偏移结果有着重要影响,因此在实际地震资料处理中应当充分考虑自由地表条件对波场的影响效应。数值模拟结果证实了组合边界条件下二维三分量TTI介质波场数值模拟方法的可行性和正确性。展开更多
基金sponsored by the National Natural Science Foundation of China Research(Grant No.41274138)the Science Foundation of China University of Petroleum(Beijing)(No.KYJJ2012-05-02)
文摘The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.
基金Project(41174061) supported by the National Natural Science Foundation of ChinaProject(2011QNZT011) supported by the Free Exploration Program of Central South University,China
文摘The absorbing boundary is the key in numerical simulation of borehole radar.Perfect match layer(PML) was chosen as the absorbing boundary in numerical simulation of GPR.But CPML(convolutional perfect match layer) approach that we have chosen has the advantage of being media independent.Beginning with the Maxwell equations in a two-dimensional structure,numerical formulas of finite-difference time-domain(FDTD) method with CPML boundary condition for transverse electric(TE) or transverse magnetic(TM) wave are presented in details.Also,there are three models for borehole-GPR simulation.By analyzing the simulation results,the features of targets in GPR are obtained,which can provide a better interpretation of real radar data.The results show that CPML is well suited for the simulation of borehole-GPR.
基金supported by the National Science and Technology Major Special Sub-project of China(No.2016ZX05024-001-008)the National Natural Science Foundation Joint Fund Prcject of China(No.U1562215).
文摘A convolution perfectly matched layer(CPML)can efficiently absorb boundary reflection in numerical simulation.However,the CPML is suitable for the first-order elastic wave equation and is difficult to apply directly to the second-order elastic wave equation.In view of this,based on the first-order CPML absorbing boundary condition,we propose a new CPML(NCPML)boundary which can be directly applied to the second-order wave equation.We first systematically extend the first-order CPML technique into second-order wave equations,neglecting the space-varying characteristics of the partial damping coefficient in the complex-frequency domain,avoiding the generation of convolution in the time domain.We then transform the technique back to the time domain through the inverse Fourier transform.Numerical simulation indicates that the space-varying characteristics of the attenuation factor have little influence on the absorption effect and increase the memory at the same time.A number of numerical examples show that the NCPML proposed in this study is effective in simulating elastic wave propagation,and this algorithm is more efficient and requires less memory allocation than the conventional PML absorbing boundary.
基金Supported by the NNSF of China(10626017)the Science Foundation of the Education Committee of Heilongjiang Province(11511276)the Foundation of Heilongjiang Province(LBH-Q05114).
文摘A new computational algorithm is introduced for solving scattering problem in periodic structure. The PML technique is used to deal with the difficulty on truncating the unbounded domain while the DSC algorithm is utilized for the spatial discretization. The present study reveals that the method is efficient for solving the problem.
基金National Natural Science Foundation of China (50608024 and 50538050).
文摘The theory of perfectly matched layer (PML) artificial boundary condition (ABC), which is characterized by absorption any wave motions with arbitrary frequency and arbitrarily incident angle, is introduced. The construction process of PML boundary based on elastodynamic partial differential equation (PDE) system is developed. Combining with velocity-stress hybrid finite element formulation, the applicability of PML boundary is investigated and the numerical reflection of PML boundary is estimated. The reflectivity of PML and multi-transmitting formula (MTF) boundary is then compared based on body wave and surface wave simulations. The results show that although PML boundary yields some reflection, its absorption performance is superior to MTF boundary in the numerical simulations of near-fault wave propagation, especially in comer and large angle grazing incidence situations. The PML boundary does not arise any unstable phenomenon and the stability of PML boundary is better than MTF boundary in hybrid finite element method. For a specified problem and analysis tolerance, the computational efficiency of PML boundary is only a little lower than MTF boundary.
基金This research was supported by Natural Science Foundation of China (No. 403740043).
文摘The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this paper, the method is developed to extend the NPML to simulating elastic wave propagation in poroelastic media. Biot's equations are discretized and approximated to a staggered-grid by applying a fourth-order accurate central difference in space and a second-order accurate central difference in time. A cylindrical twolayer seismic model and a borehole model are chosen to validate the effectiveness of the NPML. The results show that the numerical solutions agree well with the solutions of the discrete wavenumber (DW) method.
基金supported by the 863 Program(Grant No.2006AA06Z202)Open Fund of the Key Laboratory of Geophysical Exploration of CNPC(Grant No.GPKL0802)+1 种基金CNPC Young Innovation Fund(Grant No.05E7028)the Program for New Century Excellent Talents in University(Grant No.NCET-07-0845)
文摘Reverse-time migration in finite space requires effective boundary processing technology to eliminate the artificial truncation boundary effect in the migration result.On the basis of the elastic velocity-stress equations in vertical transversely isotropic media and the idea of the conventional split perfectly matched layer(PML),the PML wave equations in reverse-time migration are derived in this paper and then the high order staggered grid discrete schemes are subsequently given.Aiming at the"reflections"from the boundary to the computational domain,as well as the effect of seismic event's abrupt changes at the two ends of the seismic array,the PML arrangement in reverse-time migration is given.The synthetic and real elastic,prestack,multi-component,reverse-time depth migration results demonstrate that this method has much better absorbing effects than other methods and the joint migration produces good imaging results.
基金Supported by the National Natural Science Foundation of China
文摘The key problem of finite-difference time-domain (FD-TD) method is the skillful application of special conditions on the boundaries of the computational domain. A new technique named Perfectly Matched Layer(PML) yields a robust Absorbing Boundary Condition(ABC) independent of the angle of incidence and the frequency of outgoing waves. In this paper, the principle of the PML technique is briefly presented. Then some problems in the application and their settlements are discussed emphatically. Finally three numerical tests and a measured result are devoted to examine the accuracy and effectiveness of this approach.
基金sponsored by the National Natural Science Foundation of China (30870577)
文摘Parallel acceleration of convolution perfectly matched layer (CPML) algorithm suffers from massive division operation which is widely accepted as one of the most expensive operations for the equipment such as graphic processing unit (GPU), field programmable gate array (FPGA) etc. In pursuit of higher efficiency and lower power consumption, this article revisited the CPML theory and proposed a new fast division-free parallel CPML structure. By optimally rearranging the CPML inner iteration process, all the division operators can be eliminated and replaced by recalculating the related field updating coefficients offline. Experiments show that the proposed division-free structure can save more than 50% arithmetic instructions and 25% execution time of the traditional parallel CPML structure without any accuracy loss.
基金supported by China NSF grants Nos.11771057,11401040 and 11671052.The research of X.J.Li is supported by China NSF grant Nos.11805049 and 11771440 and by the National Magnetic Confinement Fusion Science Program No.2015GB110003.
文摘In this paper,we study the two-dimensional Helmholtz scattering problem by a locally perturbed line with impedance boundary condition.Different from the problem with Dirichlet boundary condition,the Green function of the Helmholtz equation with impedance boundary condition becomes very complicated and comprises surface waves along the locally perturbed line.A uniaxial perfectly matched layer(UPML)method is proposed to truncate the half plane into a bounded computational domain.The main contribution of this paper is to prove the well-posedness of the PML problem and the exponential convergence of the approximate solution to the exact solution as either the thickness or the medium parameter of PML increases.
基金National Natural Science Foundation of China (10477018) Science and Technology Innovation Foundation of North-western Polytechnical University (W016143)
文摘As an efficient artificial truncating boundary condition, conformal perfectly matched layer (CPML) is a kind of multilayer anisotropic absorbing media. To reduce computing effort of CPML, this article proposes a layer-oriented element integration algorithm. In this algorithm, the relative dielectric constant and permeability are considered as constants for each the very thin monolayer of CPML, and the element integration of multilayer along the normal direction is substituted by the element integration of m...
文摘从TTI介质一阶应力—速度方程出发,利用旋转交错网格高阶有限差分方法,将非分裂完全匹配层(Non-spliting Perfect Match Layer,简称NPML)边界吸收条件和自由边界条件相结合形成组合边界条件,进行了二维三分量TTI介质弹性波场数值模拟。波场快照和炮记录表明:①采用非分裂式边界条件能较好地消除近地表大角度入射波和瞬逝波;②组合边界条件与NPML边界吸收条件相比,不仅有效地压制了边界反射,同时实现了对自由地表的模拟,获得了丰富的全波场信息,其中在地表产生的PS转换横波作为一种特殊的横波现象,可为近地表结构调查以及多波波场分析等提供有益信息;③自由地表引起的面波以及多次波对偏移结果有着重要影响,因此在实际地震资料处理中应当充分考虑自由地表条件对波场的影响效应。数值模拟结果证实了组合边界条件下二维三分量TTI介质波场数值模拟方法的可行性和正确性。