期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Kernel-Based Semantic Relation Detection and Classification via Enriched Parse Tree Structure 被引量:7
1
作者 周国栋 朱巧明 《Journal of Computer Science & Technology》 SCIE EI CSCD 2011年第1期45-56,共12页
This paper proposes a tree kernel method of semantic relation detection and classification (RDC) between named entities. It resolves two critical problems in previous tree kernel methods of RDC. First, a new tree ke... This paper proposes a tree kernel method of semantic relation detection and classification (RDC) between named entities. It resolves two critical problems in previous tree kernel methods of RDC. First, a new tree kernel is presented to better capture the inherent structural information in a parse tree by enabling the standard convolution tree kernel with context-sensitiveness and approximate matching of sub-trees. Second, an enriched parse tree structure is proposed to well derive necessary structural information, e.g., proper latent annotations, from a parse tree. Evaluation on the ACE RDC corpora shows that both the new tree kernel and the enriched parse tree structure contribute significantly to RDC and our tree kernel method much outperforms the state-of-the-art ones. 展开更多
关键词 semantic relation detection and classification convolution tree kernel approximate matching context sensitiveness enriched parse tree structure
原文传递
Learning Noun Phrase Anaphoricity in Coreference Resolution via Label Propagation 被引量:1
2
作者 周国栋 孔芳 《Journal of Computer Science & Technology》 SCIE EI CSCD 2011年第1期34-44,共11页
Knowledge of noun phrase anaphoricity might be profitably exploited in coreference resolution to bypass the resolution of non-anaphoric noun phrases. However, it is surprising to notice that recent attempts to incorpo... Knowledge of noun phrase anaphoricity might be profitably exploited in coreference resolution to bypass the resolution of non-anaphoric noun phrases. However, it is surprising to notice that recent attempts to incorporate automatically acquired anaphoricity information into coreferenee resolution systems have been far from expectation. This paper proposes a global learning method in determining the anaphoricity of noun phrases via a label propagation algorithm to improve learning-based coreference resolution. In order to eliminate the huge computational burden in the label propagation algorithm, we employ the weighted support vectors as the critical instances in the training texts. In addition, two kinds of kernels, i.e instances to represent all the anaphoricity-labeled NP , the feature-based RBF (Radial Basis Function) kernel and the convolution tree kernel with approximate matching, are explored to compute the anaphoricity similarity between two noun phrases. Experiments on the ACE2003 corpus demonstrate the great effectiveness of our method in anaphoricity determination of noun phrases and its application in learning-based coreference resolution. 展开更多
关键词 coreference resolution anaphoricity determination label propagation RBF kernel convolution tree kernel
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部