期刊文献+
共找到18,965篇文章
< 1 2 250 >
每页显示 20 50 100
Downscaling Seasonal Precipitation Forecasts over East Africa with Deep Convolutional Neural Networks
1
作者 Temesgen Gebremariam ASFAW Jing-Jia LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期449-464,共16页
This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that co... This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that compare different CNN configurations and deployed the best-performing architecture to downscale one-month lead seasonal forecasts of June–July–August–September(JJAS) precipitation from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0(NUIST-CFS1.0) for 1982–2020. We also perform hyper-parameter optimization and introduce predictors over a larger area to include information about the main large-scale circulations that drive precipitation over the East Africa region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results show that the CNN-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme precipitation spatial patterns. Besides, CNN-based downscaling yields a much more accurate forecast of extreme and spell indicators and reduces the significant relative biases exhibited by the raw model predictions. Moreover, our results show that CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of East Africa. The results demonstrate the potential usefulness of CNN in downscaling seasonal precipitation predictions over East Africa,particularly in providing improved forecast products which are essential for end users. 展开更多
关键词 East Africa seasonal precipitation forecasting DOWNSCALING deep learning convolutional neural networks(cnns)
下载PDF
Development of a convolutional neural network based geomechanical upscaling technique for heterogeneous geological reservoir
2
作者 Zhiwei Ma Xiaoyan Ou Bo Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2111-2125,共15页
Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and e... Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations. 展开更多
关键词 Upscaling Lithological heterogeneity convolutional neural network(cnn) Anisotropic shear strength Nonlinear stressestrain behavior
下载PDF
Review of Artificial Intelligence for Oil and Gas Exploration: Convolutional Neural Network Approaches and the U-Net 3D Model
3
作者 Weiyan Liu 《Open Journal of Geology》 CAS 2024年第4期578-593,共16页
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou... Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis. 展开更多
关键词 Deep Learning convolutional neural networks (cnn) Seismic Fault Identification U-Net 3D Model Geological Exploration
下载PDF
An End-To-End Hyperbolic Deep Graph Convolutional Neural Network Framework
4
作者 Yuchen Zhou Hongtao Huo +5 位作者 Zhiwen Hou Lingbin Bu Yifan Wang Jingyi Mao Xiaojun Lv Fanliang Bu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期537-563,共27页
Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to sca... Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to scale-free graphs with power-law distributions,resulting in substantial distortions.Moreover,most of the existing GCN models are shallow structures,which restricts their ability to capture dependencies among distant nodes and more refined high-order node features in scale-free graphs with hierarchical structures.To more broadly and precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level aggregation of GCNs for capturing high-level information in local representations,we propose the Hyperbolic Deep Graph Convolutional Neural Network(HDGCNN),an end-to-end deep graph representation learning framework that can map scale-free graphs from Euclidean space to hyperbolic space.In HDGCNN,we define the fundamental operations of deep graph convolutional neural networks in hyperbolic space.Additionally,we introduce a hyperbolic feature transformation method based on identity mapping and a dense connection scheme based on a novel non-local message passing framework.In addition,we present a neighborhood aggregation method that combines initial structural featureswith hyperbolic attention coefficients.Through the above methods,HDGCNN effectively leverages both the structural features and node features of graph data,enabling enhanced exploration of non-local structural features and more refined node features in scale-free or hierarchical graphs.Experimental results demonstrate that HDGCNN achieves remarkable performance improvements over state-ofthe-art GCNs in node classification and link prediction tasks,even when utilizing low-dimensional embedding representations.Furthermore,when compared to shallow hyperbolic graph convolutional neural network models,HDGCNN exhibits notable advantages and performance enhancements. 展开更多
关键词 Graph neural networks hyperbolic graph convolutional neural networks deep graph convolutional neural networks message passing framework
下载PDF
Prediction of Porous Media Fluid Flow with Spatial Heterogeneity Using Criss-Cross Physics-Informed Convolutional Neural Networks
5
作者 Jiangxia Han Liang Xue +5 位作者 Ying Jia Mpoki Sam Mwasamwasa Felix Nanguka Charles Sangweni Hailong Liu Qian Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1323-1340,共18页
Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsi... Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsinformedneural network(PINN)is currently the most general framework,which is more popular due to theconvenience of constructing NNs and excellent generalization ability.The automatic differentiation(AD)-basedPINN model is suitable for the homogeneous scientific problem;however,it is unclear how AD can enforce fluxcontinuity across boundaries between cells of different properties where spatial heterogeneity is represented bygrid cells with different physical properties.In this work,we propose a criss-cross physics-informed convolutionalneural network(CC-PINN)learning architecture,aiming to learn the solution of parametric PDEs with spatialheterogeneity of physical properties.To achieve the seamless enforcement of flux continuity and integration ofphysicalmeaning into CNN,a predefined 2D convolutional layer is proposed to accurately express transmissibilitybetween adjacent cells.The efficacy of the proposedmethodwas evaluated through predictions of several petroleumreservoir problems with spatial heterogeneity and compared against state-of-the-art(PINN)through numericalanalysis as a benchmark,which demonstrated the superiority of the proposed method over the PINN. 展开更多
关键词 Physical-informed neural networks(PINN) flow in porous media convolutional neural networks spatial heterogeneity machine learning
下载PDF
Multi-Material Topology Optimization of 2D Structures Using Convolutional Neural Networks
6
作者 Jiaxiang Luo Weien Zhou +2 位作者 Bingxiao Du Daokui Li Wen Yao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1919-1947,共29页
In recent years,there has been significant research on the application of deep learning(DL)in topology optimization(TO)to accelerate structural design.However,these methods have primarily focused on solving binary TO ... In recent years,there has been significant research on the application of deep learning(DL)in topology optimization(TO)to accelerate structural design.However,these methods have primarily focused on solving binary TO problems,and effective solutions for multi-material topology optimization(MMTO)which requires a lot of computing resources are still lacking.Therefore,this paper proposes the framework of multiphase topology optimization using deep learning to accelerate MMTO design.The framework employs convolutional neural network(CNN)to construct a surrogate model for solving MMTO,and the obtained surrogate model can rapidly generate multi-material structure topologies in negligible time without any iterations.The performance evaluation results show that the proposed method not only outputs multi-material topologies with clear material boundary but also reduces the calculation cost with high prediction accuracy.Additionally,in order to find a more reasonable modeling method for MMTO,this paper studies the characteristics of surrogate modeling as regression task and classification task.Through the training of 297 models,our findings show that the regression task yields slightly better results than the classification task in most cases.Furthermore,The results indicate that the prediction accuracy is primarily influenced by factors such as the TO problem,material category,and data scale.Conversely,factors such as the domain size and the material property have minimal impact on the accuracy. 展开更多
关键词 Multi-material topology optimization convolutional neural networks deep learning finite element analysis
下载PDF
Improved Convolutional Neural Network for Traffic Scene Segmentation
7
作者 Fuliang Xu Yong Luo +1 位作者 Chuanlong Sun Hong Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2691-2708,共18页
In actual traffic scenarios,precise recognition of traffic participants,such as vehicles and pedestrians,is crucial for intelligent transportation.This study proposes an improved algorithm built on Mask-RCNN to enhanc... In actual traffic scenarios,precise recognition of traffic participants,such as vehicles and pedestrians,is crucial for intelligent transportation.This study proposes an improved algorithm built on Mask-RCNN to enhance the ability of autonomous driving systems to recognize traffic participants.The algorithmincorporates long and shortterm memory networks and the fused attention module(GSAM,GCT,and Spatial Attention Module)to enhance the algorithm’s capability to process both global and local information.Additionally,to increase the network’s initial operation stability,the original network activation function was replaced with Gaussian error linear unit.Experiments were conducted using the publicly available Cityscapes dataset.Comparing the test results,it was observed that the revised algorithmoutperformed the original algorithmin terms of AP_(50),AP_(75),and othermetrics by 8.7%and 9.6%for target detection and 12.5%and 13.3%for segmentation. 展开更多
关键词 Instance segmentation deep learning convolutional neural network attention mechanism
下载PDF
Prediction of Geopolymer Concrete Compressive Strength Using Convolutional Neural Networks
8
作者 Kolli Ramujee Pooja Sadula +4 位作者 Golla Madhu Sandeep Kautish Abdulaziz S.Almazyad Guojiang Xiong Ali Wagdy Mohamed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1455-1486,共32页
Geopolymer concrete emerges as a promising avenue for sustainable development and offers an effective solution to environmental problems.Its attributes as a non-toxic,low-carbon,and economical substitute for conventio... Geopolymer concrete emerges as a promising avenue for sustainable development and offers an effective solution to environmental problems.Its attributes as a non-toxic,low-carbon,and economical substitute for conventional cement concrete,coupled with its elevated compressive strength and reduced shrinkage properties,position it as a pivotal material for diverse applications spanning from architectural structures to transportation infrastructure.In this context,this study sets out the task of using machine learning(ML)algorithms to increase the accuracy and interpretability of predicting the compressive strength of geopolymer concrete in the civil engineering field.To achieve this goal,a new approach using convolutional neural networks(CNNs)has been adopted.This study focuses on creating a comprehensive dataset consisting of compositional and strength parameters of 162 geopolymer concrete mixes,all containing Class F fly ash.The selection of optimal input parameters is guided by two distinct criteria.The first criterion leverages insights garnered from previous research on the influence of individual features on compressive strength.The second criterion scrutinizes the impact of these features within the model’s predictive framework.Key to enhancing the CNN model’s performance is the meticulous determination of the optimal hyperparameters.Through a systematic trial-and-error process,the study ascertains the ideal number of epochs for data division and the optimal value of k for k-fold cross-validation—a technique vital to the model’s robustness.The model’s predictive prowess is rigorously assessed via a suite of performance metrics and comprehensive score analyses.Furthermore,the model’s adaptability is gauged by integrating a secondary dataset into its predictive framework,facilitating a comparative evaluation against conventional prediction methods.To unravel the intricacies of the CNN model’s learning trajectory,a loss plot is deployed to elucidate its learning rate.The study culminates in compelling findings that underscore the CNN model’s accurate prediction of geopolymer concrete compressive strength.To maximize the dataset’s potential,the application of bivariate plots unveils nuanced trends and interactions among variables,fortifying the consistency with earlier research.Evidenced by promising prediction accuracy,the study’s outcomes hold significant promise in guiding the development of innovative geopolymer concrete formulations,thereby reinforcing its role as an eco-conscious and robust construction material.The findings prove that the CNN model accurately estimated geopolymer concrete’s compressive strength.The results show that the prediction accuracy is promising and can be used for the development of new geopolymer concrete mixes.The outcomes not only underscore the significance of leveraging technology for sustainable construction practices but also pave the way for innovation and efficiency in the field of civil engineering. 展开更多
关键词 Class F fly ash compressive strength geopolymer concrete PREDICTION deep learning convolutional neural network
下载PDF
Quick Weighing of Passing Vehicles Using the Transfer-Learning-Enhanced Convolutional Neural Network
9
作者 Wangchen Yan Jinbao Yang Xin Luo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2507-2524,共18页
Transfer learning could reduce the time and resources required by the training of new models and be therefore important for generalized applications of the trainedmachine learning algorithms.In this study,a transfer l... Transfer learning could reduce the time and resources required by the training of new models and be therefore important for generalized applications of the trainedmachine learning algorithms.In this study,a transfer learningenhanced convolutional neural network(CNN)was proposed to identify the gross weight and the axle weight of moving vehicles on the bridge.The proposed transfer learning-enhanced CNN model was expected to weigh different bridges based on a small amount of training datasets and provide high identification accuracy.First of all,a CNN algorithm for bridge weigh-in-motion(B-WIM)technology was proposed to identify the axle weight and the gross weight of the typical two-axle,three-axle,and five-axle vehicles as they crossed the bridge with different loading routes and speeds.Then,the pre-trained CNN model was transferred by fine-tuning to weigh themoving vehicle on another bridge.Finally,the identification accuracy and the amount of training data required were compared between the two CNN models.Results showed that the pre-trained CNN model using transfer learning for B-WIM technology could be successfully used for the identification of the axle weight and the gross weight for moving vehicles on another bridge while reducing the training data by 63%.Moreover,the recognition accuracy of the pre-trained CNN model using transfer learning was comparable to that of the original model,showing its promising potentials in the actual applications. 展开更多
关键词 Bridge weigh-in-motion transfer learning convolutional neural network
下载PDF
Analysis of learnability of a novel hybrid quantum-classical convolutional neural network in image classification
10
作者 程涛 赵润盛 +2 位作者 王爽 王睿 马鸿洋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期275-283,共9页
We design a new hybrid quantum-classical convolutional neural network(HQCCNN)model based on parameter quantum circuits.In this model,we use parameterized quantum circuits(PQCs)to redesign the convolutional layer in cl... We design a new hybrid quantum-classical convolutional neural network(HQCCNN)model based on parameter quantum circuits.In this model,we use parameterized quantum circuits(PQCs)to redesign the convolutional layer in classical convolutional neural networks,forming a new quantum convolutional layer to achieve unitary transformation of quantum states,enabling the model to more accurately extract hidden information from images.At the same time,we combine the classical fully connected layer with PQCs to form a new hybrid quantum-classical fully connected layer to further improve the accuracy of classification.Finally,we use the MNIST dataset to test the potential of the HQCCNN.The results indicate that the HQCCNN has good performance in solving classification problems.In binary classification tasks,the classification accuracy of numbers 5 and 7 is as high as 99.71%.In multivariate classification,the accuracy rate also reaches 98.51%.Finally,we compare the performance of the HQCCNN with other models and find that the HQCCNN has better classification performance and convergence speed. 展开更多
关键词 parameterized quantum circuits quantum machine learning hybrid quantum-classical convolutional neural network
下载PDF
A Framework for Driver DrowsinessMonitoring Using a Convolutional Neural Network and the Internet of Things
11
作者 Muhamad Irsan Rosilah Hassan +3 位作者 Anwar Hassan Ibrahim Mohamad Khatim Hasan Meng Chun Lam Wan Mohd Hirwani Wan Hussain 《Intelligent Automation & Soft Computing》 2024年第2期157-174,共18页
One of the major causes of road accidents is sleepy drivers.Such accidents typically result in fatalities and financial losses and disadvantage other road users.Numerous studies have been conducted to identify the dri... One of the major causes of road accidents is sleepy drivers.Such accidents typically result in fatalities and financial losses and disadvantage other road users.Numerous studies have been conducted to identify the driver’s sleepiness and integrate it into a warning system.Most studies have examined how the mouth and eyelids move.However,this limits the system’s ability to identify drowsiness traits.Therefore,this study designed an Accident Detection Framework(RPK)that could be used to reduce road accidents due to sleepiness and detect the location of accidents.The drowsiness detectionmodel used three facial parameters:Yawning,closed eyes(blinking),and an upright head position.This model used a Convolutional Neural Network(CNN)consisting of two phases.The initial phase involves video processing and facial landmark coordinate detection.The second phase involves developing the extraction of frame-based features using normalization methods.All these phases used OpenCV and TensorFlow.The dataset contained 5017 images with 874 open eyes images,850 closed eyes images,723 open-mouth images,725 closed-mouth images,761 sleepy-head images,and 1084 non-sleepy head images.The dataset of 5017 images was divided into the training set with 4505 images and the testing set with 512 images,with a ratio of 90:10.The results showed that the RPK design could detect sleepiness by using deep learning techniques with high accuracy on all three parameters;namely 98%for eye blinking,96%for mouth yawning,and 97%for head movement.Overall,the test results have provided an overview of how the developed RPK prototype can accurately identify drowsy drivers.These findings will have a significant impact on the improvement of road users’safety and mobility. 展开更多
关键词 Drowsy drivers convolutional neural network OPENCV MICROPROCESSOR face detection
下载PDF
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification
12
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight convolutional neural network Depthwise Dilated Separable Convolution Hierarchical Multi-Scale Feature Fusion
下载PDF
Millimeter Wave Massive MIMO Heterogeneous Networks Using Fuzzy-Based Deep Convolutional Neural Network (FDCNN)
13
作者 Hussain Alaaedi Masoud Sabaei 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期633-646,共14页
Enabling high mobility applications in millimeter wave(mmWave)based systems opens up a slew of new possibilities,including vehicle communi-cations in addition to wireless virtual/augmented reality.The narrow beam usag... Enabling high mobility applications in millimeter wave(mmWave)based systems opens up a slew of new possibilities,including vehicle communi-cations in addition to wireless virtual/augmented reality.The narrow beam usage in addition to the millimeter waves sensitivity might block the coverage along with the reliability of the mobile links.In this research work,the improvement in the quality of experience faced by the user for multimedia-related applications over the millimeter-wave band is investigated.The high attenuation loss in high frequencies is compensated with a massive array structure named Multiple Input and Multiple Output(MIMO)which is utilized in a hyperdense environment called heterogeneous networks(HetNet).The optimization problem which arises while maximizing the Mean Opinion Score(MOS)is analyzed along with the QoE(Quality of Experience)metric by considering the Base Station(BS)powers in addition to the needed Quality of Service(QoS).Most of the approaches related to wireless network communication are not suitable for the millimeter-wave band because of its problems due to high complexity and its dynamic nature.Hence a deep reinforcement learning framework is developed for tackling the same opti-mization problem.In this work,a Fuzzy-based Deep Convolutional Neural Net-work(FDCNN)is proposed in addition to a Deep Reinforcing Learning Framework(DRLF)for extracting the features of highly correlated data.The investigational results prove that the proposed method yields the highest satisfac-tion to the user by increasing the number of antennas in addition with the small-scale antennas at the base stations.The proposed work outperforms in terms of MOS with multiple antennas. 展开更多
关键词 Multiple-input and multiple-output quality of experience quality of service(qos) fuzzy-based deep convolutional neural network
下载PDF
基于CNN-Swin Transformer Network的LPI雷达信号识别
14
作者 苏琮智 杨承志 +2 位作者 邴雨晨 吴宏超 邓力洪 《现代雷达》 CSCD 北大核心 2024年第3期59-65,共7页
针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transforme... 针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transformer网络(CSTN),然后利用时频分析获取雷达信号的时频特征,对图像进行预处理后输入CSTN模型进行训练,由网络的底部到顶部不断提取图像更丰富的语义信息,最后通过Softmax分类器对六类不同调制方式信号进行分类识别。仿真实验表明:在SNR为-18 dB时,该方法对六类典型雷达信号的平均识别率达到了94.26%,证明了所提方法的可行性。 展开更多
关键词 低截获概率雷达 信号调制方式识别 Swin Transformer网络 卷积神经网络 时频分析
下载PDF
Detection of Oscillations in Process Control Loops From Visual Image Space Using Deep Convolutional Networks
15
作者 Tao Wang Qiming Chen +3 位作者 Xun Lang Lei Xie Peng Li Hongye Su 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期982-995,共14页
Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have b... Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have been proposed,most of them can only address part of the practical difficulties.An oscillation is heuristically defined as a visually apparent periodic variation.However,manual visual inspection is labor-intensive and prone to missed detection.Convolutional neural networks(CNNs),inspired by animal visual systems,have been raised with powerful feature extraction capabilities.In this work,an exploration of the typical CNN models for visual oscillation detection is performed.Specifically,we tested MobileNet-V1,ShuffleNet-V2,Efficient Net-B0,and GhostNet models,and found that such a visual framework is well-suited for oscillation detection.The feasibility and validity of this framework are verified utilizing extensive numerical and industrial cases.Compared with state-of-theart oscillation detectors,the suggested framework is more straightforward and more robust to noise and mean-nonstationarity.In addition,this framework generalizes well and is capable of handling features that are not present in the training data,such as multiple oscillations and outliers. 展开更多
关键词 convolutional neural networks(cnns) deep learning image processing oscillation detection process industries
下载PDF
Deep convolutional neural network for meteorology target detection in airborne weather radar images 被引量:1
16
作者 YU Chaopeng XIONG Wei +1 位作者 LI Xiaoqing DONG Lei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1147-1157,共11页
Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a de... Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes. 展开更多
关键词 meteorology target detection ground clutter sup-pression weather radar images convolutional neural network(cnn)
下载PDF
Automatic modulation recognition of radiation source signals based on two-dimensional data matrix and improved residual neural network
17
作者 Guanghua Yi Xinhong Hao +3 位作者 Xiaopeng Yan Jian Dai Yangtian Liu Yanwen Han 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期364-373,共10页
Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ... Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR. 展开更多
关键词 Automatic modulation recognition Radiation source signals Two-dimensional data matrix Residual neural network Depthwise convolution
下载PDF
Nonparametric Statistical Feature Scaling Based Quadratic Regressive Convolution Deep Neural Network for Software Fault Prediction
18
作者 Sureka Sivavelu Venkatesh Palanisamy 《Computers, Materials & Continua》 SCIE EI 2024年第3期3469-3487,共19页
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w... The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods. 展开更多
关键词 Software defect prediction feature selection nonparametric statistical Torgerson-Gower scaling technique quadratic censored regressive convolution deep neural network softstep activation function nelder-mead method
下载PDF
Dual-Branch-UNet: A Dual-Branch Convolutional Neural Network for Medical Image Segmentation 被引量:2
19
作者 Muwei Jian Ronghua Wu +2 位作者 Hongyu Chen Lanqi Fu Chengdong Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期705-716,共12页
In intelligent perception and diagnosis of medical equipment,the visual and morphological changes in retinal vessels are closely related to the severity of cardiovascular diseases(e.g.,diabetes and hypertension).Intel... In intelligent perception and diagnosis of medical equipment,the visual and morphological changes in retinal vessels are closely related to the severity of cardiovascular diseases(e.g.,diabetes and hypertension).Intelligent auxiliary diagnosis of these diseases depends on the accuracy of the retinal vascular segmentation results.To address this challenge,we design a Dual-Branch-UNet framework,which comprises a Dual-Branch encoder structure for feature extraction based on the traditional U-Net model for medical image segmentation.To be more explicit,we utilize a novel parallel encoder made up of various convolutional modules to enhance the encoder portion of the original U-Net.Then,image features are combined at each layer to produce richer semantic data and the model’s capacity is adjusted to various input images.Meanwhile,in the lower sampling section,we give up pooling and conduct the lower sampling by convolution operation to control step size for information fusion.We also employ an attentionmodule in the decoder stage to filter the image noises so as to lessen the response of irrelevant features.Experiments are verified and compared on the DRIVE and ARIA datasets for retinal vessels segmentation.The proposed Dual-Branch-UNet has proved to be superior to other five typical state-of-the-art methods. 展开更多
关键词 convolutional neural network medical image processing retinal vessel segmentation
下载PDF
A Survey of Convolutional Neural Network in Breast Cancer 被引量:1
20
作者 Ziquan Zhu Shui-Hua Wang Yu-Dong Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2127-2172,共46页
Problems:For people all over the world,cancer is one of the most feared diseases.Cancer is one of the major obstacles to improving life expectancy in countries around the world and one of the biggest causes of death b... Problems:For people all over the world,cancer is one of the most feared diseases.Cancer is one of the major obstacles to improving life expectancy in countries around the world and one of the biggest causes of death before the age of 70 in 112 countries.Among all kinds of cancers,breast cancer is the most common cancer for women.The data showed that female breast cancer had become one of themost common cancers.Aims:A large number of clinical trials have proved that if breast cancer is diagnosed at an early stage,it could give patients more treatment options and improve the treatment effect and survival ability.Based on this situation,there are many diagnostic methods for breast cancer,such as computer-aided diagnosis(CAD).Methods:We complete a comprehensive review of the diagnosis of breast cancer based on the convolutional neural network(CNN)after reviewing a sea of recent papers.Firstly,we introduce several different imaging modalities.The structure of CNN is given in the second part.After that,we introduce some public breast cancer data sets.Then,we divide the diagnosis of breast cancer into three different tasks:1.classification;2.detection;3.segmentation.Conclusion:Although this diagnosis with CNN has achieved great success,there are still some limitations.(i)There are too few good data sets.A good public breast cancer dataset needs to involve many aspects,such as professional medical knowledge,privacy issues,financial issues,dataset size,and so on.(ii)When the data set is too large,the CNN-based model needs a sea of computation and time to complete the diagnosis.(iii)It is easy to cause overfitting when using small data sets. 展开更多
关键词 Breast cancer convolutional neural network deep learning REVIEW image modalities
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部