Diabetes mellitus is a metabolic disease in which blood glucose levels rise as a result of pancreatic insulin production failure.It causes hyperglycemia and chronic multiorgan dysfunction,including blindness,renal fai...Diabetes mellitus is a metabolic disease in which blood glucose levels rise as a result of pancreatic insulin production failure.It causes hyperglycemia and chronic multiorgan dysfunction,including blindness,renal failure,and cardi-ovascular disease,if left untreated.One of the essential checks that are needed to be performed frequently in Type 1 Diabetes Mellitus is a blood test,this procedure involves extracting blood quite frequently,which leads to subject discomfort increasing the possibility of infection when the procedure is often recurring.Exist-ing methods used for diabetes classification have less classification accuracy and suffer from vanishing gradient problems,to overcome these issues,we proposed stacking ensemble learning-based convolutional gated recurrent neural network(CGRNN)Metamodel algorithm.Our proposed method initially performs outlier detection to remove outlier data,using the Gaussian distribution method,and the Box-cox method is used to correctly order the dataset.After the outliers’detec-tion,the missing values are replaced by the data’s mean rather than their elimina-tion.In the stacking ensemble base model,multiple machine learning algorithms like Naïve Bayes,Bagging with random forest,and Adaboost Decision tree have been employed.CGRNN Meta model uses two hidden layers Long-Short-Time Memory(LSTM)and Gated Recurrent Unit(GRU)to calculate the weight matrix for diabetes prediction.Finally,the calculated weight matrix is passed to the soft-max function in the output layer to produce the diabetes prediction results.By using LSTM-based CG-RNN,the mean square error(MSE)value is 0.016 and the obtained accuracy is 91.33%.展开更多
Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes i...Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU.展开更多
In recent years,social media platforms have gained immense popularity.As a result,there has been a tremendous increase in content on social media platforms.This content can be related to an individual’s sentiments,th...In recent years,social media platforms have gained immense popularity.As a result,there has been a tremendous increase in content on social media platforms.This content can be related to an individual’s sentiments,thoughts,stories,advertisements,and news,among many other content types.With the recent increase in online content,the importance of identifying fake and real news has increased.Although,there is a lot of work present to detect fake news,a study on Fuzzy CRNN was not explored into this direction.In this work,a system is designed to classify fake and real news using fuzzy logic.The initial feature extraction process is done using a convolutional recurrent neural network(CRNN).After the extraction of features,word indexing is done with high dimensionality.Then,based on the indexing measures,the ranking process identifies whether news is fake or real.The fuzzy CRNN model is trained to yield outstanding resultswith 99.99±0.01%accuracy.This work utilizes three different datasets(LIAR,LIAR-PLUS,and ISOT)to find the most accurate model.展开更多
A tremendous amount of vendor invoices is generated in the corporate sector.To automate the manual data entry in payable documents,highly accurate Optical Character Recognition(OCR)is required.This paper proposes an e...A tremendous amount of vendor invoices is generated in the corporate sector.To automate the manual data entry in payable documents,highly accurate Optical Character Recognition(OCR)is required.This paper proposes an end-to-end OCR system that does both localization and recognition and serves as a single unit to automate payable document processing such as cheques and cash disbursement.For text localization,the maximally stable extremal region is used,which extracts a word or digit chunk from an invoice.This chunk is later passed to the deep learning model,which performs text recognition.The deep learning model utilizes both convolution neural networks and long short-term memory(LSTM).The convolution layer is used for extracting features,which are fed to the LSTM.The model integrates feature extraction,modeling sequence,and transcription into a unified network.It handles the sequences of unconstrained lengths,independent of the character segmentation or horizontal scale normalization.Furthermore,it applies to both the lexicon-free and lexicon-based text recognition,and finally,it produces a comparatively smaller model,which can be implemented in practical applications.The overall superior performance in the experimental evaluation demonstrates the usefulness of the proposed model.The model is thus generic and can be used for other similar recognition scenarios.展开更多
Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor ...Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor one-resistor(1T1R)memristor arrays is limited by the non-ideality of the devices,which prevents the hardware implementation of large and complex networks.In this work,we propose the depthwise separable convolution and bidirectional gate recurrent unit(DSC-BiGRU)network,a lightweight and highly robust hybrid neural network based on 1T1R arrays that enables efficient processing of EEG signals in the temporal,frequency and spatial domains by hybridizing DSC and BiGRU blocks.The network size is reduced and the network robustness is improved while ensuring the network classification accuracy.In the simulation,the measured non-idealities of the 1T1R array are brought into the network through statistical analysis.Compared with traditional convolutional networks,the network parameters are reduced by 95%and the network classification accuracy is improved by 21%at a 95%array yield rate and 5%tolerable error.This work demonstrates that lightweight and highly robust networks based on memristor arrays hold great promise for applications that rely on low consumption and high efficiency.展开更多
As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symboli...As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symbolic applications of PHM technology in modern manufacturing systems and industry.In this paper,a multi-scale Convolutional Gated Recurrent Unit network(MCGRU)is proposed to address raw sensory data for tool wear prediction.At the bottom of MCGRU,six parallel and independent branches with different kernel sizes are designed to form a multi-scale convolutional neural network,which augments the adaptability to features of different time scales.These features of different scales extracted from raw data are then fed into a Deep Gated Recurrent Unit network to capture long-term dependencies and learn significant representations.At the top of the MCGRU,a fully connected layer and a regression layer are built for cutting tool wear prediction.Two case studies are performed to verify the capability and effectiveness of the proposed MCGRU network and results show that MCGRU outperforms several state-of-the-art baseline models.展开更多
The battery thermal management of electric vehicles can be improved using neural networks predicting quantile sequences of the battery temperature.This work extends a method for the development of Quantile Convolution...The battery thermal management of electric vehicles can be improved using neural networks predicting quantile sequences of the battery temperature.This work extends a method for the development of Quantile Convolutional and Quantile Recurrent Neural Networks(namely Q*NN).Fleet data of 225629 drives are clustered and balanced,simulation data from 971 simulations are augmented before they are combined for training and testing.The Q*NN hyperparameters are optimized using an efficient Bayesian optimization,before the Q*NN models are compared with regression and quantile regression models for four horizons.The analysis of point-forecast and quantile-related metrics shows the superior performance of the novel Q*NN models.The median predictions of the best performing model achieve an average RMSE of 0.66°C and R^(2) of 0.84.The predicted 0.99 quantile covers 98.87%of the true values in the test data.In conclusion,this work proposes an extended development and comparison of Q*NN models for accurate battery temperature prediction.展开更多
In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the e...In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.展开更多
Currently,mobile communication is one of the widely used means of communication.Nevertheless,it is quite challenging for a telecommunication company to attract new customers.The recent concept of mobile number portabi...Currently,mobile communication is one of the widely used means of communication.Nevertheless,it is quite challenging for a telecommunication company to attract new customers.The recent concept of mobile number portability has also aggravated the problem of customer churn.Companies need to identify beforehand the customers,who could potentially churn out to the competitors.In the telecommunication industry,such identification could be done based on call detail records.This research presents an extensive experimental study based on various deep learning models,such as the 1D convolutional neural network(CNN)model along with the recurrent neural network(RNN)and deep neural network(DNN)for churn prediction.We use the mobile telephony churn prediction dataset obtained from customers-dna.com,containing the data for around 100,000 individuals,out of which 86,000 are non-churners,whereas 14,000 are churned customers.The imbalanced data are handled using undersampling and oversampling.The accuracy for CNN,RNN,and DNN is 91%,93%,and 96%,respectively.Furthermore,DNN got 99%for ROC.展开更多
Flood probability maps are essential for a range of applications,including land use planning and developing mitigation strategies and early warning systems.This study describes the potential application of two archite...Flood probability maps are essential for a range of applications,including land use planning and developing mitigation strategies and early warning systems.This study describes the potential application of two architectures of deep learning neural networks,namely convolutional neural networks(CNN)and recurrent neural networks(RNN),for spatially explicit prediction and mapping of flash flood probability.To develop and validate the predictive models,a geospatial database that contained records for the historical flood events and geo-environmental characteristics of the Golestan Province in northern Iran was constructed.The step-wise weight assessment ratio analysis(SWARA)was employed to investigate the spatial interplay between floods and different influencing factors.The CNN and RNN models were trained using the SWARA weights and validated using the receiver operating characteristics technique.The results showed that the CNN model(AUC=0.832,RMSE=0.144)performed slightly better than the RNN model(AUC=0.814,RMSE=0.181)in predicting future floods.Further,these models demonstrated an improved prediction of floods compared to previous studies that used different models in the same study area.This study showed that the spatially explicit deep learning neural network models are successful in capturing the heterogeneity of spatial patterns of flood probability in the Golestan Province,and the resulting probability maps can be used for the development of mitigation plans in response to the future floods.The general policy implication of our study suggests that design,implementation,and verification of flood early warning systems should be directed to approximately 40%of the land area characterized by high and very susceptibility to flooding.展开更多
In order to increase the accuracy rate of emotion recognition in voiceand video,the mixed convolutional neural network(CNN)and recurrent neural network(RNN)ae used to encode and integrate the two information sources.F...In order to increase the accuracy rate of emotion recognition in voiceand video,the mixed convolutional neural network(CNN)and recurrent neural network(RNN)ae used to encode and integrate the two information sources.For the audio signals,several frequency bands as well as some energy functions are extacted as low-level features by using a sophisticated audio technique,and then they are encoded w it a one-dimensional(I D)convolutional neural network to abstact high-level features.Finally,tiese are fed into a recurrent neural network for te sake of capturing dynamic tone changes in a temporal dimensionality.As a contrast,a two-dimensional(2D)convolutional neural network and a similar RNN are used to capture dynamic facial appearance changes of temporal sequences.The method was used in te Chinese Natral Audio-'Visual Emotion Database in te Chinese Conference on Pattern Recognition(CCPR)in2016.Experimental results demonstrate that te classification average precision of the proposed metiod is41.15%,which is increased by16.62%compaed with te baseline algorithm offered by the CCPR in2016.It is proved ta t te proposed method has higher accuracy in te identification of emotional information.展开更多
A recent trend in machine learning is to use deep architectures to discover multiple levels of features from data,which has achieved impressive results on various natural language processing(NLP)tasks.We propose a dee...A recent trend in machine learning is to use deep architectures to discover multiple levels of features from data,which has achieved impressive results on various natural language processing(NLP)tasks.We propose a deep neural network-based solution to Chinese semantic role labeling(SRL)with its application on message analysis.The solution adopts a six-step strategy:text normalization,named entity recognition(NER),Chinese word segmentation and part-of-speech(POS)tagging,theme classification,SRL,and slot filling.For each step,a novel deep neural network-based model is designed and optimized,particularly for smart phone applications.Experiment results on all the NLP sub-tasks of the solution show that the proposed neural networks achieve state-of-the-art performance with the minimal computational cost.The speed advantage of deep neural networks makes them more competitive for large-scale applications or applications requiring real-time response,highlighting the potential of the proposed solution for practical NLP systems.展开更多
Teaching machine to understand needs to design an algorithm for the machine to comprehend documents. As some traditional methods cannot learn the inherent characters effectively, this paper presents a new hybrid neura...Teaching machine to understand needs to design an algorithm for the machine to comprehend documents. As some traditional methods cannot learn the inherent characters effectively, this paper presents a new hybrid neural network model to extract sentence-level summarization from single document,and it allows us to develop an attention based deep neural network that can learn to understand documents with minimal prior knowledge. The proposed model composed of multiple processing layers can learn the representations of features.Word embedding is used to learn continuous word representations for constructing sentence as input to convolutional neural network. The recurrent neural network is also used to label the sentences from the original document, and the proposed BAM-GRU model is more efficient. Experimental results show the feasibility of the approach. Some problems and further works are also present in the end.展开更多
Deep-Fake is an emerging technology used in synthetic media which manipulates individuals in existing images and videos with someone else’s likeness.This paper presents the comparative study of different deep neural ...Deep-Fake is an emerging technology used in synthetic media which manipulates individuals in existing images and videos with someone else’s likeness.This paper presents the comparative study of different deep neural networks employed for Deep-Fake video detection.In the model,the features from the training data are extracted with the intended Convolution Neural Network model to form feature vectors which are further analysed using a dense layer,a Long Short-Term Memoryand Gated Recurrent by adopting transfer learning with fine tuning for training the models.The model is evaluated to detect Artificial Intelligence based Deep fakes images and videos using benchmark datasets.Comparative analysis shows that the detections are majorly biased towards domain of the dataset but there is a noteworthy improvement in the model performance parameters by using Transfer Learning whereas Convolutional-Recurrent Neural Network has benefits in sequence detection.展开更多
文摘Diabetes mellitus is a metabolic disease in which blood glucose levels rise as a result of pancreatic insulin production failure.It causes hyperglycemia and chronic multiorgan dysfunction,including blindness,renal failure,and cardi-ovascular disease,if left untreated.One of the essential checks that are needed to be performed frequently in Type 1 Diabetes Mellitus is a blood test,this procedure involves extracting blood quite frequently,which leads to subject discomfort increasing the possibility of infection when the procedure is often recurring.Exist-ing methods used for diabetes classification have less classification accuracy and suffer from vanishing gradient problems,to overcome these issues,we proposed stacking ensemble learning-based convolutional gated recurrent neural network(CGRNN)Metamodel algorithm.Our proposed method initially performs outlier detection to remove outlier data,using the Gaussian distribution method,and the Box-cox method is used to correctly order the dataset.After the outliers’detec-tion,the missing values are replaced by the data’s mean rather than their elimina-tion.In the stacking ensemble base model,multiple machine learning algorithms like Naïve Bayes,Bagging with random forest,and Adaboost Decision tree have been employed.CGRNN Meta model uses two hidden layers Long-Short-Time Memory(LSTM)and Gated Recurrent Unit(GRU)to calculate the weight matrix for diabetes prediction.Finally,the calculated weight matrix is passed to the soft-max function in the output layer to produce the diabetes prediction results.By using LSTM-based CG-RNN,the mean square error(MSE)value is 0.016 and the obtained accuracy is 91.33%.
基金supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP22H03643)Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)(JPMJSP2145)+2 种基金JST Through the Establishment of University Fellowships Towards the Creation of Science Technology Innovation(JPMJFS2115)the National Natural Science Foundation of China(52078382)the State Key Laboratory of Disaster Reduction in Civil Engineering(CE19-A-01)。
文摘Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU.
文摘In recent years,social media platforms have gained immense popularity.As a result,there has been a tremendous increase in content on social media platforms.This content can be related to an individual’s sentiments,thoughts,stories,advertisements,and news,among many other content types.With the recent increase in online content,the importance of identifying fake and real news has increased.Although,there is a lot of work present to detect fake news,a study on Fuzzy CRNN was not explored into this direction.In this work,a system is designed to classify fake and real news using fuzzy logic.The initial feature extraction process is done using a convolutional recurrent neural network(CRNN).After the extraction of features,word indexing is done with high dimensionality.Then,based on the indexing measures,the ranking process identifies whether news is fake or real.The fuzzy CRNN model is trained to yield outstanding resultswith 99.99±0.01%accuracy.This work utilizes three different datasets(LIAR,LIAR-PLUS,and ISOT)to find the most accurate model.
基金Researchers would like to thank the Deanship of Scientific Research,Qassim University,for funding publication of this project.
文摘A tremendous amount of vendor invoices is generated in the corporate sector.To automate the manual data entry in payable documents,highly accurate Optical Character Recognition(OCR)is required.This paper proposes an end-to-end OCR system that does both localization and recognition and serves as a single unit to automate payable document processing such as cheques and cash disbursement.For text localization,the maximally stable extremal region is used,which extracts a word or digit chunk from an invoice.This chunk is later passed to the deep learning model,which performs text recognition.The deep learning model utilizes both convolution neural networks and long short-term memory(LSTM).The convolution layer is used for extracting features,which are fed to the LSTM.The model integrates feature extraction,modeling sequence,and transcription into a unified network.It handles the sequences of unconstrained lengths,independent of the character segmentation or horizontal scale normalization.Furthermore,it applies to both the lexicon-free and lexicon-based text recognition,and finally,it produces a comparatively smaller model,which can be implemented in practical applications.The overall superior performance in the experimental evaluation demonstrates the usefulness of the proposed model.The model is thus generic and can be used for other similar recognition scenarios.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFB2205102)the National Natural Science Foundation of China(Grant Nos.61974164,62074166,61804181,62004219,62004220,and 62104256).
文摘Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor one-resistor(1T1R)memristor arrays is limited by the non-ideality of the devices,which prevents the hardware implementation of large and complex networks.In this work,we propose the depthwise separable convolution and bidirectional gate recurrent unit(DSC-BiGRU)network,a lightweight and highly robust hybrid neural network based on 1T1R arrays that enables efficient processing of EEG signals in the temporal,frequency and spatial domains by hybridizing DSC and BiGRU blocks.The network size is reduced and the network robustness is improved while ensuring the network classification accuracy.In the simulation,the measured non-idealities of the 1T1R array are brought into the network through statistical analysis.Compared with traditional convolutional networks,the network parameters are reduced by 95%and the network classification accuracy is improved by 21%at a 95%array yield rate and 5%tolerable error.This work demonstrates that lightweight and highly robust networks based on memristor arrays hold great promise for applications that rely on low consumption and high efficiency.
基金Supported in part by Natural Science Foundation of China(Grant Nos.51835009,51705398)Shaanxi Province 2020 Natural Science Basic Research Plan(Grant No.2020JQ-042)Aeronautical Science Foundation(Grant No.2019ZB070001).
文摘As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symbolic applications of PHM technology in modern manufacturing systems and industry.In this paper,a multi-scale Convolutional Gated Recurrent Unit network(MCGRU)is proposed to address raw sensory data for tool wear prediction.At the bottom of MCGRU,six parallel and independent branches with different kernel sizes are designed to form a multi-scale convolutional neural network,which augments the adaptability to features of different time scales.These features of different scales extracted from raw data are then fed into a Deep Gated Recurrent Unit network to capture long-term dependencies and learn significant representations.At the top of the MCGRU,a fully connected layer and a regression layer are built for cutting tool wear prediction.Two case studies are performed to verify the capability and effectiveness of the proposed MCGRU network and results show that MCGRU outperforms several state-of-the-art baseline models.
基金support by the KIT-Publication Fund of the Karlsruhe Institute of Technology.
文摘The battery thermal management of electric vehicles can be improved using neural networks predicting quantile sequences of the battery temperature.This work extends a method for the development of Quantile Convolutional and Quantile Recurrent Neural Networks(namely Q*NN).Fleet data of 225629 drives are clustered and balanced,simulation data from 971 simulations are augmented before they are combined for training and testing.The Q*NN hyperparameters are optimized using an efficient Bayesian optimization,before the Q*NN models are compared with regression and quantile regression models for four horizons.The analysis of point-forecast and quantile-related metrics shows the superior performance of the novel Q*NN models.The median predictions of the best performing model achieve an average RMSE of 0.66°C and R^(2) of 0.84.The predicted 0.99 quantile covers 98.87%of the true values in the test data.In conclusion,this work proposes an extended development and comparison of Q*NN models for accurate battery temperature prediction.
文摘In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.
文摘Currently,mobile communication is one of the widely used means of communication.Nevertheless,it is quite challenging for a telecommunication company to attract new customers.The recent concept of mobile number portability has also aggravated the problem of customer churn.Companies need to identify beforehand the customers,who could potentially churn out to the competitors.In the telecommunication industry,such identification could be done based on call detail records.This research presents an extensive experimental study based on various deep learning models,such as the 1D convolutional neural network(CNN)model along with the recurrent neural network(RNN)and deep neural network(DNN)for churn prediction.We use the mobile telephony churn prediction dataset obtained from customers-dna.com,containing the data for around 100,000 individuals,out of which 86,000 are non-churners,whereas 14,000 are churned customers.The imbalanced data are handled using undersampling and oversampling.The accuracy for CNN,RNN,and DNN is 91%,93%,and 96%,respectively.Furthermore,DNN got 99%for ROC.
基金conducted by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources(KIGAM)funded by the Ministry of Science and ICT。
文摘Flood probability maps are essential for a range of applications,including land use planning and developing mitigation strategies and early warning systems.This study describes the potential application of two architectures of deep learning neural networks,namely convolutional neural networks(CNN)and recurrent neural networks(RNN),for spatially explicit prediction and mapping of flash flood probability.To develop and validate the predictive models,a geospatial database that contained records for the historical flood events and geo-environmental characteristics of the Golestan Province in northern Iran was constructed.The step-wise weight assessment ratio analysis(SWARA)was employed to investigate the spatial interplay between floods and different influencing factors.The CNN and RNN models were trained using the SWARA weights and validated using the receiver operating characteristics technique.The results showed that the CNN model(AUC=0.832,RMSE=0.144)performed slightly better than the RNN model(AUC=0.814,RMSE=0.181)in predicting future floods.Further,these models demonstrated an improved prediction of floods compared to previous studies that used different models in the same study area.This study showed that the spatially explicit deep learning neural network models are successful in capturing the heterogeneity of spatial patterns of flood probability in the Golestan Province,and the resulting probability maps can be used for the development of mitigation plans in response to the future floods.The general policy implication of our study suggests that design,implementation,and verification of flood early warning systems should be directed to approximately 40%of the land area characterized by high and very susceptibility to flooding.
文摘In order to increase the accuracy rate of emotion recognition in voiceand video,the mixed convolutional neural network(CNN)and recurrent neural network(RNN)ae used to encode and integrate the two information sources.For the audio signals,several frequency bands as well as some energy functions are extacted as low-level features by using a sophisticated audio technique,and then they are encoded w it a one-dimensional(I D)convolutional neural network to abstact high-level features.Finally,tiese are fed into a recurrent neural network for te sake of capturing dynamic tone changes in a temporal dimensionality.As a contrast,a two-dimensional(2D)convolutional neural network and a similar RNN are used to capture dynamic facial appearance changes of temporal sequences.The method was used in te Chinese Natral Audio-'Visual Emotion Database in te Chinese Conference on Pattern Recognition(CCPR)in2016.Experimental results demonstrate that te classification average precision of the proposed metiod is41.15%,which is increased by16.62%compaed with te baseline algorithm offered by the CCPR in2016.It is proved ta t te proposed method has higher accuracy in te identification of emotional information.
文摘A recent trend in machine learning is to use deep architectures to discover multiple levels of features from data,which has achieved impressive results on various natural language processing(NLP)tasks.We propose a deep neural network-based solution to Chinese semantic role labeling(SRL)with its application on message analysis.The solution adopts a six-step strategy:text normalization,named entity recognition(NER),Chinese word segmentation and part-of-speech(POS)tagging,theme classification,SRL,and slot filling.For each step,a novel deep neural network-based model is designed and optimized,particularly for smart phone applications.Experiment results on all the NLP sub-tasks of the solution show that the proposed neural networks achieve state-of-the-art performance with the minimal computational cost.The speed advantage of deep neural networks makes them more competitive for large-scale applications or applications requiring real-time response,highlighting the potential of the proposed solution for practical NLP systems.
文摘Teaching machine to understand needs to design an algorithm for the machine to comprehend documents. As some traditional methods cannot learn the inherent characters effectively, this paper presents a new hybrid neural network model to extract sentence-level summarization from single document,and it allows us to develop an attention based deep neural network that can learn to understand documents with minimal prior knowledge. The proposed model composed of multiple processing layers can learn the representations of features.Word embedding is used to learn continuous word representations for constructing sentence as input to convolutional neural network. The recurrent neural network is also used to label the sentences from the original document, and the proposed BAM-GRU model is more efficient. Experimental results show the feasibility of the approach. Some problems and further works are also present in the end.
文摘Deep-Fake is an emerging technology used in synthetic media which manipulates individuals in existing images and videos with someone else’s likeness.This paper presents the comparative study of different deep neural networks employed for Deep-Fake video detection.In the model,the features from the training data are extracted with the intended Convolution Neural Network model to form feature vectors which are further analysed using a dense layer,a Long Short-Term Memoryand Gated Recurrent by adopting transfer learning with fine tuning for training the models.The model is evaluated to detect Artificial Intelligence based Deep fakes images and videos using benchmark datasets.Comparative analysis shows that the detections are majorly biased towards domain of the dataset but there is a noteworthy improvement in the model performance parameters by using Transfer Learning whereas Convolutional-Recurrent Neural Network has benefits in sequence detection.