Most of the existing algorithms for blind sources separation have a limitation that sources are statistically independent. However, in many practical applications, the source signals are non- negative and mutual stati...Most of the existing algorithms for blind sources separation have a limitation that sources are statistically independent. However, in many practical applications, the source signals are non- negative and mutual statistically dependent signals. When the observations are nonnegative linear combinations of nonnegative sources, the correlation coefficients of the observations are larger than these of source signals. In this letter, a novel Nonnegative Matrix Factorization (NMF) algorithm with least correlated component constraints to blind separation of convolutive mixed sources is proposed. The algorithm relaxes the source independence assumption and has low-complexity algebraic com- putations. Simulation results on blind source separation including real face image data indicate that the sources can be successfully recovered with the algorithm.展开更多
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20060280003)Shanghai Leading Academic Dis-cipline Project (T0102)
文摘Most of the existing algorithms for blind sources separation have a limitation that sources are statistically independent. However, in many practical applications, the source signals are non- negative and mutual statistically dependent signals. When the observations are nonnegative linear combinations of nonnegative sources, the correlation coefficients of the observations are larger than these of source signals. In this letter, a novel Nonnegative Matrix Factorization (NMF) algorithm with least correlated component constraints to blind separation of convolutive mixed sources is proposed. The algorithm relaxes the source independence assumption and has low-complexity algebraic com- putations. Simulation results on blind source separation including real face image data indicate that the sources can be successfully recovered with the algorithm.