Detection of multiple outliers or subset of influential points has been rarely considered in the linear measurement error models. In this paper a new influence statistic for one or a set of observations is generalized...Detection of multiple outliers or subset of influential points has been rarely considered in the linear measurement error models. In this paper a new influence statistic for one or a set of observations is generalized and characterized based on the corrected likelihood in the linear measurement error models. This influence statistic can be expressed in terms of the residuals and the leverages of linear measurement error regression. Unlike Cook's statistic, this new measure of influence has asymptotically normal distribution and is able to detect a subset of high leverage outliers which is not identified by Cook's statistic. As an illustrative example, simulation studies and a real data set are analysed.展开更多
文摘Detection of multiple outliers or subset of influential points has been rarely considered in the linear measurement error models. In this paper a new influence statistic for one or a set of observations is generalized and characterized based on the corrected likelihood in the linear measurement error models. This influence statistic can be expressed in terms of the residuals and the leverages of linear measurement error regression. Unlike Cook's statistic, this new measure of influence has asymptotically normal distribution and is able to detect a subset of high leverage outliers which is not identified by Cook's statistic. As an illustrative example, simulation studies and a real data set are analysed.