Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditiona...Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.展开更多
Structured illumination microscopy(SIM)is one of the most widely applied wide field super resolution imaging techniques with high temporal resolution and low phototoxicity.The spatial resolution of SIM is typically li...Structured illumination microscopy(SIM)is one of the most widely applied wide field super resolution imaging techniques with high temporal resolution and low phototoxicity.The spatial resolution of SIM is typically limited to two times of the diffraction limit and the depth of field is small.In this work,we propose and experimentally demonstrate a low cost,easy to implement,novel technique called speckle structured illumination endoscopy(SSIE)to enhance the resolution of a wide field endoscope with large depth of field.Here,speckle patterns are used to excite objects on the sample which is then followed by a blind-SIM algorithm for super resolution image reconstruction.Our approach is insensitive to the 3D morphology of the specimen,or the deformation of illuminations used.It greatly simplifies the experimental setup as there are no calibration protocols and no stringent control of illumination patterns nor focusing optics.We demonstrate that the SSIE can enhance the resolution 2–4.5 times that of a standard white light endoscopic(WLE)system.The SSIE presents a unique route to super resolution in endoscopic imaging at wide field of view and depth of field,which might be beneficial to the practice of clinical endoscopy.展开更多
Structured illumination microscopy(SIM)is suitable for biological samples because of its relatively low-peak illumination intensity requirement and high imaging speed.The system resolution is affected by two typical d...Structured illumination microscopy(SIM)is suitable for biological samples because of its relatively low-peak illumination intensity requirement and high imaging speed.The system resolution is affected by two typical detection modes:Point detection and area detection.However,a systematic analysis of the imaging performance of the different detection modes of the system has rarely been conducted.In this study,we compared laser point scanning point detection(PS-PD)and point scanning area detection(PS-AD)imaging in nonconfocal microscopy through theoretical analysis and simulated imaging.The results revealed that the imaging resolutions of PSPD and PS-AD depend on excitation and emission point spread functions(PSFs),respectively.Especially,we combined the second harmonic generation(SHG)of point detection(P-SHG)and area detection(A-SHG)with SIM to realize a nonlinear SIM-imaging technique that improves the imaging resolution.Moreover,we analytically and experimentally compared the nonlinear SIM performance of P-SHG with that of A-SHG.展开更多
We propose a method of complex-amplitude Fourier single-pixel imaging(CFSI)with coherent structured illumination to acquire both the amplitude and phase of an object.In the proposed method,an object is illustrated by ...We propose a method of complex-amplitude Fourier single-pixel imaging(CFSI)with coherent structured illumination to acquire both the amplitude and phase of an object.In the proposed method,an object is illustrated by a series of coherent structured light fields,which are generated by a phase-only spatial light modulator,the complex Fourier spectrum of the object can be acquired sequentially by a single-pixel photodetector.Then the desired complex-amplitude image can be retrieved directly by applying an inverse Fourier transform.We experimentally implemented this CFSI with several different types of objects.The experimental results show that the proposed method provides a promising complex-amplitude imaging approach with high quality and a stable configuration.Thus,it might find broad applications in optical metrology and biomedical science.展开更多
The miniaturized femtosecond laser in near infrared-Ⅱregion is the core equipment of threephoton microscopy.In this paper,we design a compact and robust illumination source that emits dual-color linearly polarized li...The miniaturized femtosecond laser in near infrared-Ⅱregion is the core equipment of threephoton microscopy.In this paper,we design a compact and robust illumination source that emits dual-color linearly polarized light for three-photon microscopy.Based on an all-polarizationmaintaining passive mode-locked fiber laser,we shift the center wavelength of the pulses to the 1.7m band utilizing cascade Raman effect,thereby generate dual-wavelength pulses.To enhance clarity,the two wavelengths are separated through the graded-index multimode fiber.Then we obtain the dual-pulse sequences with 1639.4 nm and 1683.7 nm wavelengths,920 fs pulse duration,and 23.75 MHz pulse repetition rate.The average power of the signal is 53.64mW,corresponding to a single pulse energy of 2.25 nJ.This illumination source can be further amplified and compressed for three-photon fluorescence imaging,especially dual-color three-photon fluorescence imaging,making it an ideal option for biomedical applications.展开更多
An image can be degraded due to many environmental factors like foggy or hazy weather,low light conditions,extra light conditions etc.Image captured under the poor light conditions is generally known as non-uniform il...An image can be degraded due to many environmental factors like foggy or hazy weather,low light conditions,extra light conditions etc.Image captured under the poor light conditions is generally known as non-uniform illumination image.Non-uniform illumination hides some important information present in an image during the image capture Also,it degrades the visual quality of image which generates the need for enhancement of such images.Various techniques have been present in literature for the enhancement of such type of images.In this paper,a novel architecture has been proposed for enhancement of poor illumination images which uses radial basis approximations based BEMD(Bi-dimensional Empirical Mode Decomposition).The enhancement algorithm is applied on intensity and saturation components of image.Firstly,intensity component has been decomposed into various bi-dimensional intrinsic mode function and residue by using sifting algorithm.Secondly,some linear transformations techniques have been applied on various bidimensional intrinsic modes obtained and residue and further on joining the transformed modes with residue,enhanced intensity component is obtained.Saturation part of an image is then enhanced in accordance to the enhanced intensity component.Final enhanced image can be obtained by joining the hue,enhanced intensity and enhanced saturation parts of the given image.The proposed algorithm will not only give the visual pleasant image but maintains the naturalness of image also.展开更多
AIM:To evaluate the efficacy and safety of Usights UC100 illuminated microcatheter in microcatheter-assisted trabeculotomy(MAT).METHODS:Totally 10 eyes of 10 patients with primary open angle glaucoma(POAG)who underwen...AIM:To evaluate the efficacy and safety of Usights UC100 illuminated microcatheter in microcatheter-assisted trabeculotomy(MAT).METHODS:Totally 10 eyes of 10 patients with primary open angle glaucoma(POAG)who underwent MAT facilitated by Usights UC100(5 eyes)or iTrack(5 eyes)were reviewed.The success of this surgery was defined as intraocular pressure(IOP)<22 mm Hg with>30%reduction,without oral glaucoma medications,or additional glaucoma surgery.RESULTS:The mean pre-operative IOP was 25.38±10.22 mm Hg in the Usights UC100 group and 19.98±3.87 mm Hg in the iTrack group.MAT was achieved in all eyes in both groups.The success rates for the Usights UC100 group and iTrack groups were in all and 4 eyes,respectively.Both microcatheters produced a statistically significant reduction in IOP,and eyes using Usights UC100 achieved a lower IOP than the iTrack group at 3mo followup(12.58±1.52 and 14.84±1.89 mm Hg,respectively),but no statistical significance was there.No severe side effects were observed in either group.CONCLUSION:MAT using Usights UC100 or iTrack both achieve significant pressure reduction in cases of POAG,and Usights UC100 is as safe as iTrack.展开更多
The conventional method of seismic data acquisition geometry design is based on the assumption of horizontal subsurface reflectors, which often is not suitable for complex structure. We start from a controlled illumin...The conventional method of seismic data acquisition geometry design is based on the assumption of horizontal subsurface reflectors, which often is not suitable for complex structure. We start from a controlled illumination analysis and put forward a method of seismic survey geometry design for target-oriented imaging. The method needs a velocity model obtained by a preliminary seismic interpretation. The one-way Fourier finite-difference wave propagator is used to extrapolate plane wave sources on the target layer to the surface. By analyzing the wave energy distribution at the surface extrapolated from the target layer, the shot or receiver locations needed for target layer imaging can be determined. Numerical tests using the SEG-EAGE salt model suggest that this method is useful for confirming the special seismic acquisition geometry layout for target-oriented imaging.展开更多
This paper presents an efficient hierarchical occlusion test algorithm to support the global illumination solution such as Ray Tracing and Radiosity. This method, which is based on a cone volume intersection examinati...This paper presents an efficient hierarchical occlusion test algorithm to support the global illumination solution such as Ray Tracing and Radiosity. This method, which is based on a cone volume intersection examination, can rapidly remove the irrelevant parts in a scene and find the vertices which fall into the shadow area of a given object. It is an effective alternative to the conventional shadow feeler method.展开更多
A new regression algorithm of an adaptive reduced relevance vector machine is proposed to estimate the illumination chromaticity of an image for the purpose of color constancy. Within the framework of sparse Bayesian ...A new regression algorithm of an adaptive reduced relevance vector machine is proposed to estimate the illumination chromaticity of an image for the purpose of color constancy. Within the framework of sparse Bayesian learning, the algorithm extends the relevance vector machine by combining global and local kernels adaptively in the form of multiple kernels, and the improved locality preserving projection (LLP) is then applied to reduce the column dimension of the multiple kernel input matrix to achieve less training time. To estimate the illumination chromaticity, the algorithm is trained by fuzzy central values of chromaticity histograms of a set of images and the corresponding illuminants. Experiments with real images indicate that the proposed algorithm performs better than the support vector machine and the relevance vector machine while requiring less training time than the relevance vector machine.展开更多
To evaluate the effects of solar greenhouse with different structure and CO2 enrichment on illumination and temperature performance of greenhouse and cucumber growth and development in the central region of Inner Mong...To evaluate the effects of solar greenhouse with different structure and CO2 enrichment on illumination and temperature performance of greenhouse and cucumber growth and development in the central region of Inner Mongolia, the research used traditional solar greenhouse (A) and blanket-inside solar greenhouse(B), and set 4 treatments: AE (traditional solar greenhouse A with CO2 enrichment), AN (traditional solar greenhouse A without CO2 enrichment), BE (blanket-inside solar greenhouse B with CO2 enrichment) and BN (blanket-inside solar greenhouse B without CO2 enrichment), to explore the influence of cucumber growth, photosynthetic property, quality and yield in different structure solar greenhouses with CO2 enrichment. The results showed that the illumination and temperature in blanket-inside solar greenhouse was superior to traditional solar greenhouse, and the average light intensity in blanket-inside solar greenhouse increased by 21.05%, compared with traditional solar greenhouse. Under the condition of same greenhouse structure, stem height ,average stem diameter, contents of soluble sugar, vitamin C, net photosynthetic rate and yield showed any significant difference between the treatments with CO2 enrichment or not. Under the condition of same CO2 concentration, BE cucumber average stem height, average stem diameter, contents of soluble sugar, net photosynthetic rate and yield in BE was higher than which in AE. Therefore, the optimization in structure of blanket-inside solar greenhouse remarkably improved illumination and temperature property, combining with CO2 enrichment as application technology, there was crucial significance to promote the greenhouse performance and improve the efficiency of greenhouse vegetable production.展开更多
In this paper an attempt of employing network resources to solve a complex and time-consuming problem is presented. The global illumination problem is selected as the study objective. An improved density estimation al...In this paper an attempt of employing network resources to solve a complex and time-consuming problem is presented. The global illumination problem is selected as the study objective. An improved density estimation algorithm is first developed, in which the more inherent concurrency is explored. Then its parallel implementation by using a PVM mechanism and the running performance analysis are provided. The analysis results show the expected speed-up obtained and demonstrate that the PVM has good application prospects for parallel computation in a distributed network.展开更多
This study aimed to investigate the primary and secondary metabolism of Scutel aria baicalensis Georgi during seed germination process under different il umination time. [Method] Chlorophyl (CHL) content, soluble su...This study aimed to investigate the primary and secondary metabolism of Scutel aria baicalensis Georgi during seed germination process under different il umination time. [Method] Chlorophyl (CHL) content, soluble sugar content, phenylalanine ammonia lyase (PAL) activity and cinnamate-4-hydroxylase (C4H) ac-tivity were determined with ultraviolet spectrophotometry. The secondary metabolites were detected by high performance liquid chromatography (HPLC). [Result] The re-sults indicated that the germination of S. baicalensis seeds was not sensitive to light and the seedlings were very sensitive to light. CHL content, soluble sugar content, PAL activity and C4H activity increased continuously with the il umination time. The secondary metabolites showed a similar trend. [Conclusion] Il umination time promoted the formation of leaf photosynthetic pigments, thereby affecting the synthesis of primary and secondary metabolites and the activities of PAL and C4H. Therefore, the quality of S. baicalensis can be improved by regulating the il umina-tion time appropriately.展开更多
The influence of UV illumination on passivity and pitting susceptibility on X70 pipoeline steel in a borate buffer (pH=8.4 ) solution containing NaCl is described. It is observed that illumination of the sample lead...The influence of UV illumination on passivity and pitting susceptibility on X70 pipoeline steel in a borate buffer (pH=8.4 ) solution containing NaCl is described. It is observed that illumination of the sample leads to a decrease in its pitting susceptibility as indicated by pitting potential and incubation time measurements in chloride containing electrolytes. This effect is strongly dependent on the applied potential during passivation. The electronic properties of the passive films on X70 steel were studied by Mott-Schottky analysis and photocurrent transient measurements. The results indicated that illumination during passivation led to modifications in the electronic properties of the passive films, mainly to a decrease of the bulk doping and an increase in the surface state density. The cause for the decrease in the pitting susceptibility is preliminary explained in terms of such modifications of the passive flm.展开更多
The different reflection characteristics of the surface of tin steel strips and the different speeds of the tinning line demand an adaptive illumination light source for online machine vision inspection. This light so...The different reflection characteristics of the surface of tin steel strips and the different speeds of the tinning line demand an adaptive illumination light source for online machine vision inspection. This light source can be integrated with a time delay integration charge-coupled device (TDI CCD ) to capture the images of moving objects and facilitate inspection of the surface quality of tin steel strips. On-site application show the effectiveness of the TDI camera with the adaptive illumination light source in detecting the surface defects on tin steel strips of three different materials and with different tin coating weights.展开更多
The appearance of a face is severely altered by illumination conditions that makes automatic face recognition a challenging task. In this paper we propose a Gaussian Mixture Models (GMM)-based human face identificatio...The appearance of a face is severely altered by illumination conditions that makes automatic face recognition a challenging task. In this paper we propose a Gaussian Mixture Models (GMM)-based human face identification technique built in the Fourier or frequency domain that is robust to illumination changes and does not require “illumination normalization” (removal of illumination effects) prior to application unlike many existing methods. The importance of the Fourier domain phase in human face identification is a well-established fact in signal processing. A maximum a posteriori (or, MAP) estimate based on the posterior likelihood is used to perform identification, achieving misclassification error rates as low as 2% on a database that contains images of 65 individuals under 21 different illumination conditions. Furthermore, a misclassification rate of 3.5% is observed on the Yale database with 10 people and 64 different illumination conditions. Both these sets of results are significantly better than those obtained from traditional PCA and LDA classifiers. Statistical analysis pertaining to model selection is also presented.展开更多
The Pre-Stack Depth Migration (PSDM) method based on wavefield continuation is the most reliable method for imaging complex structure in the subsurface, although there are large computational costs and poorly adapti...The Pre-Stack Depth Migration (PSDM) method based on wavefield continuation is the most reliable method for imaging complex structure in the subsurface, although there are large computational costs and poorly adaptive geometry. Plane wave shot migration is another method to perform exact wave equation prestack imaging with high computational efficiency and without the migration aperture problem. Moreover, wavefield energy can be compensated at the target zone by controlled illumination. In this paper, plane wave shot PSDM was implemented by the control of the plane down-going wavefield and selection of number and range of the raypaths in order to optimize the imaging effect. In addition, controlled illumination techniques are applied to enhance the imaging precision of interesting areas at different depths. Numerical calculation indicates that plane wave shot imaging is a rapid and efficient method with less computational cost and easy parallel computation compared to the single-square-root operator imaging for common shot gathers and double- square-root operator imaging for common midpoint gathers.展开更多
Structured illumination microscopy(SIM)is an essential super-resolution microscopy technique that enhances resolution.Several images are required to reconstruct a super-resolution image.However,linear SIM resolution e...Structured illumination microscopy(SIM)is an essential super-resolution microscopy technique that enhances resolution.Several images are required to reconstruct a super-resolution image.However,linear SIM resolution enhancement can only increase the spatial resolution of micros-copy by a factor of two at most because the frequency of the structured illumination pattern is limited by the cutoff frequency of the excitation point spread function.The frequency of the pattern generated by the nonlinear response in samples is not limited;therefore,nonlinear SIM(NL-SIM),in theory,has no inherent limit to the resolution.In the present study,we describe a two-photon nonlinear SIM(2P-SIM)technique using a multiple harmonics scanning pattern that employs a composite structured illumination pattern,which can produce a higher order harmonic pattern based on the fluorescence nonlinear response in a 2P process.The theoretical models of super-resolution imaging were established through our simulation,which describes the working mechanism of the multi-frequency structure of the nonsinusoidal function to improve the reso-lution.The simulation results predict that a 5-fold improvement in resolution in the 2P-SIM is possible.展开更多
基金funded by the National Natural Science Foundation of China(62125504,61827825,and 31901059)Zhejiang Provincial Ten Thousand Plan for Young Top Talents(2020R52001)Open Project Program of Wuhan National Laboratory for Optoelectronics(2021WNLOKF007).
文摘Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.
基金partially supported by the Gordon and Betty Moore Foundation Grant No.5722
文摘Structured illumination microscopy(SIM)is one of the most widely applied wide field super resolution imaging techniques with high temporal resolution and low phototoxicity.The spatial resolution of SIM is typically limited to two times of the diffraction limit and the depth of field is small.In this work,we propose and experimentally demonstrate a low cost,easy to implement,novel technique called speckle structured illumination endoscopy(SSIE)to enhance the resolution of a wide field endoscope with large depth of field.Here,speckle patterns are used to excite objects on the sample which is then followed by a blind-SIM algorithm for super resolution image reconstruction.Our approach is insensitive to the 3D morphology of the specimen,or the deformation of illuminations used.It greatly simplifies the experimental setup as there are no calibration protocols and no stringent control of illumination patterns nor focusing optics.We demonstrate that the SSIE can enhance the resolution 2–4.5 times that of a standard white light endoscopic(WLE)system.The SSIE presents a unique route to super resolution in endoscopic imaging at wide field of view and depth of field,which might be beneficial to the practice of clinical endoscopy.
基金supported by the National Natural Science Foundation of China (62275168,62275164,61905145)Guangdong Natural Science Foundation and Province Project (2021A1515011916)+1 种基金Shenzhen Science and Technology R&D and Innovation Foundation (JCYJ20200109105608771)the Science and Technology Planning Project of Shenzhen Municipality (ZDSYS20210623092006020).
文摘Structured illumination microscopy(SIM)is suitable for biological samples because of its relatively low-peak illumination intensity requirement and high imaging speed.The system resolution is affected by two typical detection modes:Point detection and area detection.However,a systematic analysis of the imaging performance of the different detection modes of the system has rarely been conducted.In this study,we compared laser point scanning point detection(PS-PD)and point scanning area detection(PS-AD)imaging in nonconfocal microscopy through theoretical analysis and simulated imaging.The results revealed that the imaging resolutions of PSPD and PS-AD depend on excitation and emission point spread functions(PSFs),respectively.Especially,we combined the second harmonic generation(SHG)of point detection(P-SHG)and area detection(A-SHG)with SIM to realize a nonlinear SIM-imaging technique that improves the imaging resolution.Moreover,we analytically and experimentally compared the nonlinear SIM performance of P-SHG with that of A-SHG.
基金Project supported by the Natural Science Foundation of Hebei Province,China(Grant Nos.A2022201039 and F2019201446)the MultiYear Research Grant of University of Macao,China(Grant No.MYRG2020-00082-IAPME)+2 种基金the Science and Technology Development Fund from Macao SAR(FDCT),China(Grant No.0062/2020/AMJ)the Advanced Talents Incubation Program of the Hebei University(Grant No.8012605)the National Natural Science Foundation of China(Grant Nos.11204062,61774053,and 11674273)。
文摘We propose a method of complex-amplitude Fourier single-pixel imaging(CFSI)with coherent structured illumination to acquire both the amplitude and phase of an object.In the proposed method,an object is illustrated by a series of coherent structured light fields,which are generated by a phase-only spatial light modulator,the complex Fourier spectrum of the object can be acquired sequentially by a single-pixel photodetector.Then the desired complex-amplitude image can be retrieved directly by applying an inverse Fourier transform.We experimentally implemented this CFSI with several different types of objects.The experimental results show that the proposed method provides a promising complex-amplitude imaging approach with high quality and a stable configuration.Thus,it might find broad applications in optical metrology and biomedical science.
基金supported by the Fundamental Re-search Funds for the Central Universities(HYGJXM202309).
文摘The miniaturized femtosecond laser in near infrared-Ⅱregion is the core equipment of threephoton microscopy.In this paper,we design a compact and robust illumination source that emits dual-color linearly polarized light for three-photon microscopy.Based on an all-polarizationmaintaining passive mode-locked fiber laser,we shift the center wavelength of the pulses to the 1.7m band utilizing cascade Raman effect,thereby generate dual-wavelength pulses.To enhance clarity,the two wavelengths are separated through the graded-index multimode fiber.Then we obtain the dual-pulse sequences with 1639.4 nm and 1683.7 nm wavelengths,920 fs pulse duration,and 23.75 MHz pulse repetition rate.The average power of the signal is 53.64mW,corresponding to a single pulse energy of 2.25 nJ.This illumination source can be further amplified and compressed for three-photon fluorescence imaging,especially dual-color three-photon fluorescence imaging,making it an ideal option for biomedical applications.
基金This research is financially supported by the Deanship of Scientific Research at King Khalid University under research grant number(R.G.P 2/157/43).
文摘An image can be degraded due to many environmental factors like foggy or hazy weather,low light conditions,extra light conditions etc.Image captured under the poor light conditions is generally known as non-uniform illumination image.Non-uniform illumination hides some important information present in an image during the image capture Also,it degrades the visual quality of image which generates the need for enhancement of such images.Various techniques have been present in literature for the enhancement of such type of images.In this paper,a novel architecture has been proposed for enhancement of poor illumination images which uses radial basis approximations based BEMD(Bi-dimensional Empirical Mode Decomposition).The enhancement algorithm is applied on intensity and saturation components of image.Firstly,intensity component has been decomposed into various bi-dimensional intrinsic mode function and residue by using sifting algorithm.Secondly,some linear transformations techniques have been applied on various bidimensional intrinsic modes obtained and residue and further on joining the transformed modes with residue,enhanced intensity component is obtained.Saturation part of an image is then enhanced in accordance to the enhanced intensity component.Final enhanced image can be obtained by joining the hue,enhanced intensity and enhanced saturation parts of the given image.The proposed algorithm will not only give the visual pleasant image but maintains the naturalness of image also.
基金Supported by the Clinical Medicine Plus X-Young Scholars Project,Peking University(No.PKU2020LCXQ023)National Natural Science Foundation of China(No.82101107).
文摘AIM:To evaluate the efficacy and safety of Usights UC100 illuminated microcatheter in microcatheter-assisted trabeculotomy(MAT).METHODS:Totally 10 eyes of 10 patients with primary open angle glaucoma(POAG)who underwent MAT facilitated by Usights UC100(5 eyes)or iTrack(5 eyes)were reviewed.The success of this surgery was defined as intraocular pressure(IOP)<22 mm Hg with>30%reduction,without oral glaucoma medications,or additional glaucoma surgery.RESULTS:The mean pre-operative IOP was 25.38±10.22 mm Hg in the Usights UC100 group and 19.98±3.87 mm Hg in the iTrack group.MAT was achieved in all eyes in both groups.The success rates for the Usights UC100 group and iTrack groups were in all and 4 eyes,respectively.Both microcatheters produced a statistically significant reduction in IOP,and eyes using Usights UC100 achieved a lower IOP than the iTrack group at 3mo followup(12.58±1.52 and 14.84±1.89 mm Hg,respectively),but no statistical significance was there.No severe side effects were observed in either group.CONCLUSION:MAT using Usights UC100 or iTrack both achieve significant pressure reduction in cases of POAG,and Usights UC100 is as safe as iTrack.
文摘The conventional method of seismic data acquisition geometry design is based on the assumption of horizontal subsurface reflectors, which often is not suitable for complex structure. We start from a controlled illumination analysis and put forward a method of seismic survey geometry design for target-oriented imaging. The method needs a velocity model obtained by a preliminary seismic interpretation. The one-way Fourier finite-difference wave propagator is used to extrapolate plane wave sources on the target layer to the surface. By analyzing the wave energy distribution at the surface extrapolated from the target layer, the shot or receiver locations needed for target layer imaging can be determined. Numerical tests using the SEG-EAGE salt model suggest that this method is useful for confirming the special seismic acquisition geometry layout for target-oriented imaging.
文摘This paper presents an efficient hierarchical occlusion test algorithm to support the global illumination solution such as Ray Tracing and Radiosity. This method, which is based on a cone volume intersection examination, can rapidly remove the irrelevant parts in a scene and find the vertices which fall into the shadow area of a given object. It is an effective alternative to the conventional shadow feeler method.
基金The National Natural Science Foundation of China(No60573139)the Innovation Foundation of Xidian University forGraduates (No05008)
文摘A new regression algorithm of an adaptive reduced relevance vector machine is proposed to estimate the illumination chromaticity of an image for the purpose of color constancy. Within the framework of sparse Bayesian learning, the algorithm extends the relevance vector machine by combining global and local kernels adaptively in the form of multiple kernels, and the improved locality preserving projection (LLP) is then applied to reduce the column dimension of the multiple kernel input matrix to achieve less training time. To estimate the illumination chromaticity, the algorithm is trained by fuzzy central values of chromaticity histograms of a set of images and the corresponding illuminants. Experiments with real images indicate that the proposed algorithm performs better than the support vector machine and the relevance vector machine while requiring less training time than the relevance vector machine.
文摘To evaluate the effects of solar greenhouse with different structure and CO2 enrichment on illumination and temperature performance of greenhouse and cucumber growth and development in the central region of Inner Mongolia, the research used traditional solar greenhouse (A) and blanket-inside solar greenhouse(B), and set 4 treatments: AE (traditional solar greenhouse A with CO2 enrichment), AN (traditional solar greenhouse A without CO2 enrichment), BE (blanket-inside solar greenhouse B with CO2 enrichment) and BN (blanket-inside solar greenhouse B without CO2 enrichment), to explore the influence of cucumber growth, photosynthetic property, quality and yield in different structure solar greenhouses with CO2 enrichment. The results showed that the illumination and temperature in blanket-inside solar greenhouse was superior to traditional solar greenhouse, and the average light intensity in blanket-inside solar greenhouse increased by 21.05%, compared with traditional solar greenhouse. Under the condition of same greenhouse structure, stem height ,average stem diameter, contents of soluble sugar, vitamin C, net photosynthetic rate and yield showed any significant difference between the treatments with CO2 enrichment or not. Under the condition of same CO2 concentration, BE cucumber average stem height, average stem diameter, contents of soluble sugar, net photosynthetic rate and yield in BE was higher than which in AE. Therefore, the optimization in structure of blanket-inside solar greenhouse remarkably improved illumination and temperature property, combining with CO2 enrichment as application technology, there was crucial significance to promote the greenhouse performance and improve the efficiency of greenhouse vegetable production.
文摘In this paper an attempt of employing network resources to solve a complex and time-consuming problem is presented. The global illumination problem is selected as the study objective. An improved density estimation algorithm is first developed, in which the more inherent concurrency is explored. Then its parallel implementation by using a PVM mechanism and the running performance analysis are provided. The analysis results show the expected speed-up obtained and demonstrate that the PVM has good application prospects for parallel computation in a distributed network.
基金Supported by Agricultural Improved Variety Project of Shandong Province(2005LZ08,2008LZ013)~~
文摘This study aimed to investigate the primary and secondary metabolism of Scutel aria baicalensis Georgi during seed germination process under different il umination time. [Method] Chlorophyl (CHL) content, soluble sugar content, phenylalanine ammonia lyase (PAL) activity and cinnamate-4-hydroxylase (C4H) ac-tivity were determined with ultraviolet spectrophotometry. The secondary metabolites were detected by high performance liquid chromatography (HPLC). [Result] The re-sults indicated that the germination of S. baicalensis seeds was not sensitive to light and the seedlings were very sensitive to light. CHL content, soluble sugar content, PAL activity and C4H activity increased continuously with the il umination time. The secondary metabolites showed a similar trend. [Conclusion] Il umination time promoted the formation of leaf photosynthetic pigments, thereby affecting the synthesis of primary and secondary metabolites and the activities of PAL and C4H. Therefore, the quality of S. baicalensis can be improved by regulating the il umina-tion time appropriately.
基金the National Natural Science Foundation of China (No. 20373062).
文摘The influence of UV illumination on passivity and pitting susceptibility on X70 pipoeline steel in a borate buffer (pH=8.4 ) solution containing NaCl is described. It is observed that illumination of the sample leads to a decrease in its pitting susceptibility as indicated by pitting potential and incubation time measurements in chloride containing electrolytes. This effect is strongly dependent on the applied potential during passivation. The electronic properties of the passive films on X70 steel were studied by Mott-Schottky analysis and photocurrent transient measurements. The results indicated that illumination during passivation led to modifications in the electronic properties of the passive films, mainly to a decrease of the bulk doping and an increase in the surface state density. The cause for the decrease in the pitting susceptibility is preliminary explained in terms of such modifications of the passive flm.
文摘The different reflection characteristics of the surface of tin steel strips and the different speeds of the tinning line demand an adaptive illumination light source for online machine vision inspection. This light source can be integrated with a time delay integration charge-coupled device (TDI CCD ) to capture the images of moving objects and facilitate inspection of the surface quality of tin steel strips. On-site application show the effectiveness of the TDI camera with the adaptive illumination light source in detecting the surface defects on tin steel strips of three different materials and with different tin coating weights.
文摘The appearance of a face is severely altered by illumination conditions that makes automatic face recognition a challenging task. In this paper we propose a Gaussian Mixture Models (GMM)-based human face identification technique built in the Fourier or frequency domain that is robust to illumination changes and does not require “illumination normalization” (removal of illumination effects) prior to application unlike many existing methods. The importance of the Fourier domain phase in human face identification is a well-established fact in signal processing. A maximum a posteriori (or, MAP) estimate based on the posterior likelihood is used to perform identification, achieving misclassification error rates as low as 2% on a database that contains images of 65 individuals under 21 different illumination conditions. Furthermore, a misclassification rate of 3.5% is observed on the Yale database with 10 people and 64 different illumination conditions. Both these sets of results are significantly better than those obtained from traditional PCA and LDA classifiers. Statistical analysis pertaining to model selection is also presented.
基金This project is sporspored by Fund item:the National Development and Innovation Committee Program (2005) 2372the National High-tech R&D Program (863 Program) 2006AA06Z241 of ChinaYouth Innovation Fund of CNPC (Program:Prestack Imaging Integral Study for Complex near Surface)
文摘The Pre-Stack Depth Migration (PSDM) method based on wavefield continuation is the most reliable method for imaging complex structure in the subsurface, although there are large computational costs and poorly adaptive geometry. Plane wave shot migration is another method to perform exact wave equation prestack imaging with high computational efficiency and without the migration aperture problem. Moreover, wavefield energy can be compensated at the target zone by controlled illumination. In this paper, plane wave shot PSDM was implemented by the control of the plane down-going wavefield and selection of number and range of the raypaths in order to optimize the imaging effect. In addition, controlled illumination techniques are applied to enhance the imaging precision of interesting areas at different depths. Numerical calculation indicates that plane wave shot imaging is a rapid and efficient method with less computational cost and easy parallel computation compared to the single-square-root operator imaging for common shot gathers and double- square-root operator imaging for common midpoint gathers.
基金This work Was supported by National Natural Science Foundation of China(grant nos.61775148,61527827,and 61905145)Guangdong Natural Science Foundation and Province Project(2021A1515011916)Shenzhen Science and Technology R&D and Innovation Foundation(grant nos.JCYJ20200109105608771.J CYJ20180305124754860 and JCYJ20180228162956597).
文摘Structured illumination microscopy(SIM)is an essential super-resolution microscopy technique that enhances resolution.Several images are required to reconstruct a super-resolution image.However,linear SIM resolution enhancement can only increase the spatial resolution of micros-copy by a factor of two at most because the frequency of the structured illumination pattern is limited by the cutoff frequency of the excitation point spread function.The frequency of the pattern generated by the nonlinear response in samples is not limited;therefore,nonlinear SIM(NL-SIM),in theory,has no inherent limit to the resolution.In the present study,we describe a two-photon nonlinear SIM(2P-SIM)technique using a multiple harmonics scanning pattern that employs a composite structured illumination pattern,which can produce a higher order harmonic pattern based on the fluorescence nonlinear response in a 2P process.The theoretical models of super-resolution imaging were established through our simulation,which describes the working mechanism of the multi-frequency structure of the nonsinusoidal function to improve the reso-lution.The simulation results predict that a 5-fold improvement in resolution in the 2P-SIM is possible.