期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effects of cooling rate and Al on MnS formation in medium-carbon non-quenched and tempered steels 被引量:12
1
作者 Meng-long Li Fu-ming Wang +3 位作者 Chang-rong Li Zhan-bing Yang Qing-yong Meng and Su-fen Tao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第6期589-597,共9页
The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s^-1. The formation mechanisms of three t... The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s^-1. The formation mechanisms of three types of MnS were elucidated based on phase diagram information combined with crystal growth models. The morphology of MnS is governed by the precipitation mode and the growth conditions. A monotectic reaction and subsequent fast solidification lead to globular Type I MnS. Type II MnS inclusions with different morphological characteristics form as a result of a eutectic reaction followed by the growth in the Fe matrix. Type III MnS presents a divorced eutectic morphology. At the cooling rate of 0.24°C·s^-1, the precipitation of dispersed Type III MnS is significantly enhanced by the addition of 0.044wt% acid-soluble Al(Als), while Type II MnS clusters prefer to form in steels with either 0.034wt% or 0.052wt% Als. At the relatively higher cooling rates of 200°C·s^-1 and 0.43°C·s^-1, the formation of Type I and Type II MnS inclusions is promoted, and the influence of Al is negligible. The results of this work are expected to be employed in practice to improve the mechanical properties of non-quenched and tempered steels. 展开更多
关键词 medium carbon steels cooling rate aluminum content manganese sulfide formation mechanisms
下载PDF
Microstructural Transformation and Precipitation of an Ultra-high Strength Steel under Continuous Cooling
2
作者 陈永利 ZHAO Yang +1 位作者 ZHOU Xuejiao HUANG Jianguo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第2期387-392,共6页
We investigated phase transition and precipitation of ultra-high strength steel(UHSS)in a new "short process" with controlled rolling and controlled cooling.Thermalexpansion test combined with metallographic obser... We investigated phase transition and precipitation of ultra-high strength steel(UHSS)in a new "short process" with controlled rolling and controlled cooling.Thermalexpansion test combined with metallographic observation was used to research the continuous cooling transformation(CCT)curve.Moreover,the microstructuraltransformation and precipitation law was revealed by morphologicalobservation and alloying elements by electron probe micro-analyzer(EPMA).Transmission electron microscopy(TEM)was utilized to analyze the composition and grain orientation of microstructure.The study showed that the measured criticaltransformation temperatures of Ac1 and Ac3 were 746 and 868 ℃,respectively.The CCT curve indicated that the undercooled austenite was transformed into proeutectoid ferrite and bainite with HV 520 in a broad range of cooling rate 0.1^(-1) ℃·s^(-1).When subjected to a cooling rate of 1 ℃·s^(-1),the undercooled austenite was divided into small-sized blocks by formed martensite.With further increase of cooling rate,micro-hardness increased dramatically,the microstructure of specimen was mainly lathe bainite(LB),granular bainite(GB),lath martensite(LM)and residualaustenite.By diffraction test analysis,it was identified that there was K-S orientation relationship between martensite and austenite for {110}_α//{111}_γ,{111}_α//{101}_γ.EPMA clearly showed that carbon diffused adequately due to staying for a long time at high temperature with a lower cooling rate of 2 ℃·s-1.Phase transition drive force was lower and the residualaustenite existed in the block form of Martensite austenite island(M-A).With the increase of cooling rate to 10 ℃·s^(-1),the block residualaustenite reduced,the carbon content of residualaustenite increased and α phase around the residualaustenite formed into a low carbon bainite form. 展开更多
关键词 ultra high strength steel continuous cooling transformation medium plate bainite martensite residual austenite
下载PDF
Improvement of Hole-Expansion Property for Medium Carbon Steels by Ultra Fast Cooling After Hot Strip Rolling 被引量:4
3
作者 WANG Bin LIU Zhen-yu +1 位作者 ZHOU Xiao-guang WANG Guo-dong 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2013年第6期25-32,共8页
The improvement of hole-expansion properties for medium carbon steels by ultra fast cooling (UFC) after hot strip rolling was investigated.It was found that finely dispersed spherical cementite could be formed after... The improvement of hole-expansion properties for medium carbon steels by ultra fast cooling (UFC) after hot strip rolling was investigated.It was found that finely dispersed spherical cementite could be formed after ultra fast cooling , coiling and annealing treatment.Tensile strength of the steel after annealing was measured to be about 440MPa.During hole-expansion test , cracks were observed in the edge region around the punched hole because necking or cracking took place when tangential elongation exceeded the forming limit.Cracks were mainly formed by the coalescence of micro-voids.Fine and homogeneous microstructure comprised of ferrite and spheroidized cementite could increase elongation values of the tested sheets by suppressing the combination of the adjacent micro-voids , resulting in the improved hole-expansion property. 展开更多
关键词 hole-expansion property medium carbon steel ultra fast cooling UFC spheroidized cementite micro-void
原文传递
A Deprojection Analysis of Abell 1650 with XMM-Newton 被引量:1
4
作者 Shu-Mei Jia Yong Chen Li Chen 《Chinese Journal of Astronomy and Astrophysics》 CSCD 2006年第2期181-196,共16页
We revisit the XMM-Newton observation of the galaxy cluster Abell 1650 with a deprojection technique. We find that the radial deprojected spectra of Abell 1650 can be marginally fitted by a single-temperature model. I... We revisit the XMM-Newton observation of the galaxy cluster Abell 1650 with a deprojection technique. We find that the radial deprojected spectra of Abell 1650 can be marginally fitted by a single-temperature model. In order to study the properties of the central gas, we fit the spectra of the central two regions with a two- temperature model. The fits then become significantly better and the cool gas about 1~2 keV can be connected with the gas cooling. Fitting the central spectrum (r≤1′) by using a cooling flow model with an isothermal component yields a small mass deposition rate of 10-7^+11 M. yr^-1, while the standard cooling flow model can not fit this spectrum satisfactorily except that there exists a cut-off temperature having a level of about 3 keV. From the isothermal model we derive the deprojected electron density profile ne(r), and then together with the deprojected temperature profile the total mass and gas mass fraction of cluster are also determined. We compare the properties of Abell 1650 with those of Abell 1835 (a large cooling flow cluster) and some other clusters, to explore the difference in properties between large and small cooling flow cluster, and what causes the difference in the cooling flow of different clusters. It has been shown that Abell 1835 has a steeper potential well and thus a higher electron density and a lower temperature in its center, indicating that the shape of the gravitational potential well in central region determines the cooling flow rates of clusters. We calculate the potential, internal and radiated energies of these two clusters, and find that the gas energies in both clusters are conserved during the collapsing stage. 展开更多
关键词 galaxies: clusters: individual: Abell 1650 -galaxies: cooling flowsgalaxies: evolution - galaxies: intergalactic medium - X-rays: galaxies: clusters
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部