Analyses the cooling of mold and plastic part during injection molding and the continued cooling of plastic part after being ejected from mold using the heat transfer theory and Boundary Element Method (BEM) to predic...Analyses the cooling of mold and plastic part during injection molding and the continued cooling of plastic part after being ejected from mold using the heat transfer theory and Boundary Element Method (BEM) to predict the temperature distribution in both mold and plastic part,and presents the experiments carried out with plates of ABS (Acrylonitrile Butadiene Styrene) to verify the validity of the cooling analysis software used to simulate the temperature distribution in ABS plate parts, and concludes that the analysis software agree qualitatively well with actual experimental findings.展开更多
This paper presents simulation study on Milled Grooved conformal cooling channels(MGCCC)in injection molding.MGCCC has a more effective cooling surface area which helps to provide efficient cooling as compared to conv...This paper presents simulation study on Milled Grooved conformal cooling channels(MGCCC)in injection molding.MGCCC has a more effective cooling surface area which helps to provide efficient cooling as compared to conventional cooling.A case study of Encloser part is investigated for cycle time reduction and quality improvement.The performance designs of straight drilled are compared with MGCCC by using Autodesk Moldflow Insight(AMI)2016.The results show total 32.1% reduction of cooling time and 9.86% reduction of warpage in case of MGCCC as compared to conventional cooling.展开更多
Cooling system improvement is important in injection molding to get betterquality and productivity. The aim of this paper was to compare the different shapes of theconformal cooling channels (CCC) with constant surfac...Cooling system improvement is important in injection molding to get betterquality and productivity. The aim of this paper was to compare the different shapes of theconformal cooling channels (CCC) with constant surface area and CCC with constantvolume in injection molding using Mold-flow Insight 2016 software. Also the CCC resultswere compared with conventional cooling channels. Four different shapes of the CCC suchas circular, elliptical, rectangular and semi-circular were proposed. The locations of thecooling channels were also kept constant. The results in terms of cooling time, cycle timereduction and improvement in quality of the product shows that no significant effect ofCCC’s shapes when surface area of CCC kept constant. On the other hand, the rectangularCCC shows better result as compared to other shapes of CCC when volume of CCC werekept constant.展开更多
The influence of temperature, chloride ions and sulfide ions on the anticorrosion behavior of 316L stainless steel in simulated cooling water was studied by electrochemical impedance spectroscopy and anodic polarizati...The influence of temperature, chloride ions and sulfide ions on the anticorrosion behavior of 316L stainless steel in simulated cooling water was studied by electrochemical impedance spectroscopy and anodic polarization curves. The results show that the film resistance increases with the solution temperature but decreases after 8 days’ immersion, which indicates that the film formed at higher temperature has inferior anticorrosion behavior; Chloride ions and sulfide ions have remarkable effects on the electrochemical property of 316L stainless steel in simulated cooling water and the pitting potential declines with the concentration of chloride ions; the passivation current has no obvious effect; the rise of the concentration of sulfide ions obviously increases the passivation current, but the pitting potential changes little, which indicates that the two types of ions may have different effects on destructing passive film of stainless steel. The critical concentration of chloride ions causing anodic potential curve’s change in simulated cooling water is 250 mg/L for 316 L stainless. The effect of sulfide ions on the corrosion resistance behavior of stainless steel is increasing the passivation current density Ip. The addition of 6 mg/L sulfide ions to the solution makes Ip of 316 L increase by 0.5 times.展开更多
A large-scale large eddy simulation in high performance personal computer clusters is carried out to present unsteady mixing mechanism of film cooling and the development of films. Simulation cases include a single-ho...A large-scale large eddy simulation in high performance personal computer clusters is carried out to present unsteady mixing mechanism of film cooling and the development of films. Simulation cases include a single-hole plate with the inclined angle of 30° and blowing ratio of 0.5, and a single-row plate with hole-spacing of 1.5D and 2D (diameters of the hole). According to the massive simulation results, some new unsteady phenomena of gas films are found. The vortex system is changed in different position with the development of film cooling with the time marching the process of a single-row plate film cooling. Due to the mutual interference effects including mutual exclusion, a certain periodic sloshing and mutual fusion, and the structures of a variety of vortices change between parallel gas films. Macroscopic flow structures and heat transfer behaviors are obtained based on 20 million grids and Reynolds number of 28600.展开更多
An integrated CAD/CAE/CAM system, HSC--1.1, is described in the paper. HSC--1.1 integrates surface modeling, mold design, technological simulations and NC machining into a full CAD/ CAE/CAM system with data exchange f...An integrated CAD/CAE/CAM system, HSC--1.1, is described in the paper. HSC--1.1 integrates surface modeling, mold design, technological simulations and NC machining into a full CAD/ CAE/CAM system with data exchange from one module to another. The practice shows that HSC-- 1.1 is a useful tool for injection molding and can assist engineers in reducing mold cost and improving mold quality.展开更多
The ion cyclotron resonance of frequency heating(ICRH) plays an important role in plasma heating.Two ICRH antennas were designed and applied on the EAST tokamak.In order to meet the requirement imposed by high-power...The ion cyclotron resonance of frequency heating(ICRH) plays an important role in plasma heating.Two ICRH antennas were designed and applied on the EAST tokamak.In order to meet the requirement imposed by high-power and long-pulse operation of EAST in the future,an active cooling system is mandatory to be designed to remove the heat load deposited on the components.Thermal analyses for high heat-load components have been carried out,which presented clear temperature distribution on each component and provided the reference data to do the optimization.Meanwhile,heat pipes were designed to satisfy the high requirement imposed by a Faraday shield and lateral limiter.展开更多
The study proves that the conformal cooling channel can overcome the disadvantages of the conventional cooling channel resulting from the limitation in complicated shape.The simulation analyses of the fragrance lamp w...The study proves that the conformal cooling channel can overcome the disadvantages of the conventional cooling channel resulting from the limitation in complicated shape.The simulation analyses of the fragrance lamp with different cooling layouts show that the conformal cooling channel can offer a more uniform heat dissipation,lower volume shrinkage and shorter time to freeze than the conventional channel,which indicates significantly improvements in productivity and quality.展开更多
The effect of Cl^- on the 316L stainless steel in simulated cooling water has been studied using polarization curves, electrochemical impedance spectroscopy (EIS), Mott- Schottky plot and scanning electron microsco...The effect of Cl^- on the 316L stainless steel in simulated cooling water has been studied using polarization curves, electrochemical impedance spectroscopy (EIS), Mott- Schottky plot and scanning electron microscopy (SEM) techniques. Cl^- concentrations vary from 200 to 900 mg/L. Results reveal that the corrosion resistance increases with the decrease of Cl^- concentration in simulated cooling water. The increase of Cl^- concentration leads to the shift of the corrosion potential towards the positive direction. Mott-Schottky curves show that in the passive film, Cr2Oa and FeO at the inner layer exhibit P-type but Fe2O3 and CrOa (CrO4^2-) N-type semiconductive properties. The SEM/EDX data demonstrate that elements such as Fe, O, C, Si and Cl as well as the presence of calcium and aluminum are presented on the surface of the metal.展开更多
Solidification process of 231 t 30Cr2Ni4MoV ingot manufactured by slow cooling process was studied using experimental and numerical simulations, which tackled the problems of high cost and long period in large ingot s...Solidification process of 231 t 30Cr2Ni4MoV ingot manufactured by slow cooling process was studied using experimental and numerical simulations, which tackled the problems of high cost and long period in large ingot studying. Based on the numerical results of large ingot, five characteristic locations under different temperature gradients and cooling rates chosen from the large ingot were simulated. The experiments were performed under the same temperature conditions as in numerical simulations with specialized instrument. The influences of temperature gradient in the solid-liquid interface and solidification rate on the size and morphology of solidification structure were analyzed at cooling rate ranging from 10-3 to 10 2℃ s-1. Solidification macrostructure and microstructure showed that no columnar dendrite was found in any specimen. The grain size and secondary dendrite arm spacing decreased at larger cooling rate, and the relationship between secondary dendrite arm spacing and local solidification time or cooling rate was determined.展开更多
Laser cooling of Li-like C^3+and O^4+relativistic heavy ion beams is planned at the experimental Cooler Storage Ring(CSRe). Recently, a preparatory experiment to test important prerequisites for laser cooling of r...Laser cooling of Li-like C^3+and O^4+relativistic heavy ion beams is planned at the experimental Cooler Storage Ring(CSRe). Recently, a preparatory experiment to test important prerequisites for laser cooling of relativistic^12C^3+ion beams using a pulsed laser system has been performed at the CSRe. Unfortunately, the interaction between the ions and the pulsed laser cannot be detected. In order to study the laser cooling process and find the optimized parameters for future laser cooling experiments, a multi-particle tracking method has been developed to simulate the detailed longitudinal dynamics of laser-cooled ion beams at the CSRe. Simulations of laser cooling of the^12C^3+ion beams by scanning the frequency of the RF-buncher or continuous wave(CW) laser wavelength have been performed. The simulation results indicate that ion beams with a large momentum spread could be laser-cooled by the combination of only one CW laser and the RF-buncher, and show the requirements of a successful laser cooling experiment. The optimized parameters for scanning the RF-buncher frequency or laser frequency have been obtained.Furthermore, the heating effects have been estimated for laser cooling at the CSRe. The Schottky noise spectra of longitudinally modulated and laser-cooled ion beams have been simulated to fully explain and anticipate the experimental results. The combination of Schottky spectra from the highly sensitive resonant Schottky pick-up and the simulation methods developed in this paper will be helpful to investigate the longitudinal dynamics of RF-bunched and ultra-cold ion beams in the upcoming laser cooling experiments at the CSRe.展开更多
文摘Analyses the cooling of mold and plastic part during injection molding and the continued cooling of plastic part after being ejected from mold using the heat transfer theory and Boundary Element Method (BEM) to predict the temperature distribution in both mold and plastic part,and presents the experiments carried out with plates of ABS (Acrylonitrile Butadiene Styrene) to verify the validity of the cooling analysis software used to simulate the temperature distribution in ABS plate parts, and concludes that the analysis software agree qualitatively well with actual experimental findings.
文摘This paper presents simulation study on Milled Grooved conformal cooling channels(MGCCC)in injection molding.MGCCC has a more effective cooling surface area which helps to provide efficient cooling as compared to conventional cooling.A case study of Encloser part is investigated for cycle time reduction and quality improvement.The performance designs of straight drilled are compared with MGCCC by using Autodesk Moldflow Insight(AMI)2016.The results show total 32.1% reduction of cooling time and 9.86% reduction of warpage in case of MGCCC as compared to conventional cooling.
文摘Cooling system improvement is important in injection molding to get betterquality and productivity. The aim of this paper was to compare the different shapes of theconformal cooling channels (CCC) with constant surface area and CCC with constantvolume in injection molding using Mold-flow Insight 2016 software. Also the CCC resultswere compared with conventional cooling channels. Four different shapes of the CCC suchas circular, elliptical, rectangular and semi-circular were proposed. The locations of thecooling channels were also kept constant. The results in terms of cooling time, cycle timereduction and improvement in quality of the product shows that no significant effect ofCCC’s shapes when surface area of CCC kept constant. On the other hand, the rectangularCCC shows better result as compared to other shapes of CCC when volume of CCC werekept constant.
文摘The influence of temperature, chloride ions and sulfide ions on the anticorrosion behavior of 316L stainless steel in simulated cooling water was studied by electrochemical impedance spectroscopy and anodic polarization curves. The results show that the film resistance increases with the solution temperature but decreases after 8 days’ immersion, which indicates that the film formed at higher temperature has inferior anticorrosion behavior; Chloride ions and sulfide ions have remarkable effects on the electrochemical property of 316L stainless steel in simulated cooling water and the pitting potential declines with the concentration of chloride ions; the passivation current has no obvious effect; the rise of the concentration of sulfide ions obviously increases the passivation current, but the pitting potential changes little, which indicates that the two types of ions may have different effects on destructing passive film of stainless steel. The critical concentration of chloride ions causing anodic potential curve’s change in simulated cooling water is 250 mg/L for 316 L stainless. The effect of sulfide ions on the corrosion resistance behavior of stainless steel is increasing the passivation current density Ip. The addition of 6 mg/L sulfide ions to the solution makes Ip of 316 L increase by 0.5 times.
基金partially supported by the National Science and Technology Major Project(2013CB035700)the National Natural Science Foundation of China(11672225,11511130053)the Funds for the Central Universities(xjj2014135)
文摘A large-scale large eddy simulation in high performance personal computer clusters is carried out to present unsteady mixing mechanism of film cooling and the development of films. Simulation cases include a single-hole plate with the inclined angle of 30° and blowing ratio of 0.5, and a single-row plate with hole-spacing of 1.5D and 2D (diameters of the hole). According to the massive simulation results, some new unsteady phenomena of gas films are found. The vortex system is changed in different position with the development of film cooling with the time marching the process of a single-row plate film cooling. Due to the mutual interference effects including mutual exclusion, a certain periodic sloshing and mutual fusion, and the structures of a variety of vortices change between parallel gas films. Macroscopic flow structures and heat transfer behaviors are obtained based on 20 million grids and Reynolds number of 28600.
文摘An integrated CAD/CAE/CAM system, HSC--1.1, is described in the paper. HSC--1.1 integrates surface modeling, mold design, technological simulations and NC machining into a full CAD/ CAE/CAM system with data exchange from one module to another. The practice shows that HSC-- 1.1 is a useful tool for injection molding and can assist engineers in reducing mold cost and improving mold quality.
基金supported by National Natural Science Foundation of China(Grant No.11375233)
文摘The ion cyclotron resonance of frequency heating(ICRH) plays an important role in plasma heating.Two ICRH antennas were designed and applied on the EAST tokamak.In order to meet the requirement imposed by high-power and long-pulse operation of EAST in the future,an active cooling system is mandatory to be designed to remove the heat load deposited on the components.Thermal analyses for high heat-load components have been carried out,which presented clear temperature distribution on each component and provided the reference data to do the optimization.Meanwhile,heat pipes were designed to satisfy the high requirement imposed by a Faraday shield and lateral limiter.
基金the National Natural Science Foundation of China (No.50875096)
文摘The study proves that the conformal cooling channel can overcome the disadvantages of the conventional cooling channel resulting from the limitation in complicated shape.The simulation analyses of the fragrance lamp with different cooling layouts show that the conformal cooling channel can offer a more uniform heat dissipation,lower volume shrinkage and shorter time to freeze than the conventional channel,which indicates significantly improvements in productivity and quality.
基金supported by the National Natural Science Foundation of China (No.50871020)Science & Technology Program of Beijing(No.D09030303790901)
文摘The effect of Cl^- on the 316L stainless steel in simulated cooling water has been studied using polarization curves, electrochemical impedance spectroscopy (EIS), Mott- Schottky plot and scanning electron microscopy (SEM) techniques. Cl^- concentrations vary from 200 to 900 mg/L. Results reveal that the corrosion resistance increases with the decrease of Cl^- concentration in simulated cooling water. The increase of Cl^- concentration leads to the shift of the corrosion potential towards the positive direction. Mott-Schottky curves show that in the passive film, Cr2Oa and FeO at the inner layer exhibit P-type but Fe2O3 and CrOa (CrO4^2-) N-type semiconductive properties. The SEM/EDX data demonstrate that elements such as Fe, O, C, Si and Cl as well as the presence of calcium and aluminum are presented on the surface of the metal.
基金Acknowledgements This work was financially supported by the National Natural Science Foundation of China (51704210), the National Key Research and Development Program of China (No. 2017YFB0701802) and Natural Science Foundation of Hebei Province (E2017105016).
文摘Solidification process of 231 t 30Cr2Ni4MoV ingot manufactured by slow cooling process was studied using experimental and numerical simulations, which tackled the problems of high cost and long period in large ingot studying. Based on the numerical results of large ingot, five characteristic locations under different temperature gradients and cooling rates chosen from the large ingot were simulated. The experiments were performed under the same temperature conditions as in numerical simulations with specialized instrument. The influences of temperature gradient in the solid-liquid interface and solidification rate on the size and morphology of solidification structure were analyzed at cooling rate ranging from 10-3 to 10 2℃ s-1. Solidification macrostructure and microstructure showed that no columnar dendrite was found in any specimen. The grain size and secondary dendrite arm spacing decreased at larger cooling rate, and the relationship between secondary dendrite arm spacing and local solidification time or cooling rate was determined.
基金Supported by National Natural Science Foundation of China(11405237,11504388)
文摘Laser cooling of Li-like C^3+and O^4+relativistic heavy ion beams is planned at the experimental Cooler Storage Ring(CSRe). Recently, a preparatory experiment to test important prerequisites for laser cooling of relativistic^12C^3+ion beams using a pulsed laser system has been performed at the CSRe. Unfortunately, the interaction between the ions and the pulsed laser cannot be detected. In order to study the laser cooling process and find the optimized parameters for future laser cooling experiments, a multi-particle tracking method has been developed to simulate the detailed longitudinal dynamics of laser-cooled ion beams at the CSRe. Simulations of laser cooling of the^12C^3+ion beams by scanning the frequency of the RF-buncher or continuous wave(CW) laser wavelength have been performed. The simulation results indicate that ion beams with a large momentum spread could be laser-cooled by the combination of only one CW laser and the RF-buncher, and show the requirements of a successful laser cooling experiment. The optimized parameters for scanning the RF-buncher frequency or laser frequency have been obtained.Furthermore, the heating effects have been estimated for laser cooling at the CSRe. The Schottky noise spectra of longitudinally modulated and laser-cooled ion beams have been simulated to fully explain and anticipate the experimental results. The combination of Schottky spectra from the highly sensitive resonant Schottky pick-up and the simulation methods developed in this paper will be helpful to investigate the longitudinal dynamics of RF-bunched and ultra-cold ion beams in the upcoming laser cooling experiments at the CSRe.