期刊文献+
共找到439篇文章
< 1 2 22 >
每页显示 20 50 100
HEURISTIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR AIR COMBAT DECISION-MAKING ON CMTA 被引量:16
1
作者 罗德林 杨忠 +2 位作者 段海滨 吴在桂 沈春林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第1期20-26,共7页
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt... Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem. 展开更多
关键词 air combat decision-making cooperative multiple target attack particle swarm optimization heuristic algorithm
下载PDF
Quantum-Inspired Particle Swarm Optimization Algorithm Encoded by Probability Amplitudes of Multi-Qubits
2
作者 Xin Li Huangfu Xu Xuezhong Guan 《Open Journal of Optimization》 2015年第2期21-30,共10页
To enhance the optimization ability of particle swarm algorithm, a novel quantum-inspired particle swarm optimization algorithm is proposed. In this method, the particles are encoded by the probability amplitudes of t... To enhance the optimization ability of particle swarm algorithm, a novel quantum-inspired particle swarm optimization algorithm is proposed. In this method, the particles are encoded by the probability amplitudes of the basic states of the multi-qubits system. The rotation angles of multi-qubits are determined based on the local optimum particle and the global optimal particle, and the multi-qubits rotation gates are employed to update the particles. At each of iteration, updating any qubit can lead to updating all probability amplitudes of the corresponding particle. The experimental results of some benchmark functions optimization show that, although its single step iteration consumes long time, the optimization ability of the proposed method is significantly higher than other similar algorithms. 展开更多
关键词 quantum Computing particle swarm optimization Multi-Qubits PROBABILITY AMPLITUDES Encoding algorithm Design
下载PDF
钻孔瞬变电磁法扫描探测RCQPSO-LMO组合算法2.5D反演 被引量:3
3
作者 程久龙 焦俊俊 +1 位作者 陈志 董毅 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第2期781-792,共12页
利用钻孔进行超前探测地质构造及含水体是地下开挖工程中的常规手段,如何利用这些钻孔进行钻孔瞬变电磁法扫描探测,从而实现钻孔孔壁外围地质异常体的精细探测,对实现地下工程地质透明化具有重要的指导意义.本文提出钻孔瞬变电磁法扫描... 利用钻孔进行超前探测地质构造及含水体是地下开挖工程中的常规手段,如何利用这些钻孔进行钻孔瞬变电磁法扫描探测,从而实现钻孔孔壁外围地质异常体的精细探测,对实现地下工程地质透明化具有重要的指导意义.本文提出钻孔瞬变电磁法扫描探测2.5D反演的数据解译方法,首先针对随机性反演算法时效性低,易陷入局部最优解,而确定性反演算法依赖初始模型的问题,提出了组合策略的量子粒子群优化算法用来随机搜索最优初始模型.在此基础上,利用Levenberg-Marquarat方法求解Occam反演的目标函数,形成了RCQPSO-LMO组合算法进行2.5D反演,通过对比组合算法和单一算法,验证了组合算法具有更精确的反演结果.其次结合屏蔽条件下扫描探测,对比分析了有无屏蔽的2.5D反演结果,通过设定屏蔽系数对非探测方向信号进行部分压制,可以较好地解决钻孔径向扫描探测中对非探测方向信号部分屏蔽下的反演及成像.最后建立三组理论模型进行组合算法2.5D反演,结果表明:组合算法反演结果与理论模型的一致性较好,对低阻异常体的反演精度较高,验证了组合算法对钻孔孔壁外围低阻异常体具有较高的反演精度和分辨能力. 展开更多
关键词 钻孔瞬变电磁法 扫描探测 量子粒子群优化算法 组合算法 2.5D反演
下载PDF
ACCQPSO:一种改进的量子粒子群优化算法及其应用
4
作者 孙隽丰 李成海 宋亚飞 《信息网络安全》 CSCD 北大核心 2024年第4期574-586,共13页
针对量子粒子群优化算法前期易陷入局部极值点、后期寻优精度不高等问题,文章提出一种自适应交叉算子的混沌量子粒子群优化算法,并将其应用于BP神经网络超参数寻优。首先,利用Logistics映射初始种群为混沌序列进行最优解搜索,增强初始... 针对量子粒子群优化算法前期易陷入局部极值点、后期寻优精度不高等问题,文章提出一种自适应交叉算子的混沌量子粒子群优化算法,并将其应用于BP神经网络超参数寻优。首先,利用Logistics映射初始种群为混沌序列进行最优解搜索,增强初始种群的随机性与遍历性,提高算法寻优能力;然后,通过纵向交叉操作进行种群中个体的信息交换,并引入自适应交叉概率公式,增加种群多样性,提高算法的寻优精度;最后,在实验中,一方面,选取8个函数在高低两个维度进行验证,同时进行Wilcoxon秩和检验分析以及消融实验,验证该算法相较其他算法的有效性;另一方面,通过算法优化BP神经网络应用到网络安全态势预测任务中,实验结果表明该算法收敛速度相较于对比算法有大幅度提升。 展开更多
关键词 量子粒子群优化算法 混沌映射 交叉算子 自适应调整策略 BP神经网络
下载PDF
Optimal Planning of Charging Station for Electric Vehicle Based on Quantum PSO Algorithm 被引量:9
5
作者 LIU Zifa ZHANG Wei WANG Zeli 《中国电机工程学报》 EI CSCD 北大核心 2012年第22期I0006-I0006,共1页
关键词 电动汽车 粒子群算法 充电站 规划 优化 量子 能源 EV
下载PDF
Quantum control based on three forms of Lyapunov functions
6
作者 俞国慧 杨洪礼 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期216-222,共7页
This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.S... This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.Stability is analyzed by the La Salle invariance principle and the numerical simulation is carried out in a 2D test system.The calculation process for the Lyapunov function is based on a combination of the average of virtual mechanical quantities, the particle swarm algorithm and a simulated annealing algorithm.Finally, a unified form of the control laws under the three forms is given. 展开更多
关键词 quantum system Lyapunov function particle swarm optimization simulated annealing algorithms quantum control
下载PDF
PSO Clustering Algorithm Based on Cooperative Evolution
7
作者 曲建华 邵增珍 刘希玉 《Journal of Donghua University(English Edition)》 EI CAS 2010年第2期285-288,共4页
Among the bio-inspired techniques,PSO-based clustering algorithms have received special attention. An improved method named Particle Swarm Optimization (PSO) clustering algorithm based on cooperative evolution with mu... Among the bio-inspired techniques,PSO-based clustering algorithms have received special attention. An improved method named Particle Swarm Optimization (PSO) clustering algorithm based on cooperative evolution with multi-populations was presented. It adopts cooperative evolutionary strategy with multi-populations to change the mode of traditional searching optimum solutions. It searches the local optimum and updates the whole best position (gBest) and local best position (pBest) ceaselessly. The gBest will be passed in all sub-populations. When the gBest meets the precision,the evolution will terminate. The whole clustering process is divided into two stages. The first stage uses the cooperative evolutionary PSO algorithm to search the initial clustering centers. The second stage uses the K-means algorithm. The experiment results demonstrate that this method can extract the correct number of clusters with good clustering quality compared with the results obtained from other clustering algorithms. 展开更多
关键词 particle swarm optimization (PSO) clustering algorithm cooperative evolution muiti-populations
下载PDF
Quantum-inspired swarm evolution algorithm
8
作者 HUANG You-rui TANG Chao-li WANG Shuang 《通讯和计算机(中英文版)》 2008年第5期36-39,共4页
关键词 量子计算 颗粒集群优化 进化算法 计算机技术
下载PDF
A novel mapping algorithm for three-dimensional network on chip based on quantum-behaved particle swarm optimization 被引量:2
9
作者 Cui HUANG Dakun ZHANG Guozhi SONG 《Frontiers of Computer Science》 SCIE EI CSCD 2017年第4期622-631,共10页
Mapping of three-dimensional network on chip is a key problem in the research of three-dimensional network on chip. The quality of the mapping algorithm used di- rectly affects the communication efficiency between IP ... Mapping of three-dimensional network on chip is a key problem in the research of three-dimensional network on chip. The quality of the mapping algorithm used di- rectly affects the communication efficiency between IP cores and plays an important role in the optimization of power consumption and throughput of the whole chip. In this paper, ba- sic concepts and related work of three-dimensional network on chip are introduced. Quantum-behaved particle swarm op- timization algorithm is applied to the mapping problem of three-dimensional network on chip for the first time. Sim- ulation results show that the mapping algorithm based on quantum-behaved particle swarm algorithm has faster con- vergence speed with much better optimization performance compared with the mapping algorithm based on particle swarm algorithm. It also can effectively reduce the power consumption of mapping of three-dimensional network on chip. 展开更多
关键词 three-dimensional network on chip mapping al-gorithm quantum-behaved particle swarm optimization al-gorithm particle swarm optimization algorithm low powerconsumption
原文传递
An Effective Non-Commutative Encryption Approach with Optimized Genetic Algorithm for Ensuring Data Protection in Cloud Computing 被引量:2
10
作者 S.Jerald Nirmal Kumar S.Ravimaran M.M.Gowthul Alam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期671-697,共27页
Nowadays,succeeding safe communication and protection-sensitive data from unauthorized access above public networks are the main worries in cloud servers.Hence,to secure both data and keys ensuring secured data storag... Nowadays,succeeding safe communication and protection-sensitive data from unauthorized access above public networks are the main worries in cloud servers.Hence,to secure both data and keys ensuring secured data storage and access,our proposed work designs a Novel Quantum Key Distribution(QKD)relying upon a non-commutative encryption framework.It makes use of a Novel Quantum Key Distribution approach,which guarantees high level secured data transmission.Along with this,a shared secret is generated using Diffie Hellman(DH)to certify secured key generation at reduced time complexity.Moreover,a non-commutative approach is used,which effectively allows the users to store and access the encrypted data into the cloud server.Also,to prevent data loss or corruption caused by the insiders in the cloud,Optimized Genetic Algorithm(OGA)is utilized,which effectively recovers the data and retrieve it if the missed data without loss.It is then followed with the decryption process as if requested by the user.Thus our proposed framework ensures authentication and paves way for secure data access,with enhanced performance and reduced complexities experienced with the prior works. 展开更多
关键词 Cloud computing quantum key distribution Diffie Hellman non-commutative approach genetic algorithm particle swarm optimization
下载PDF
多场景下基于AHP-EWM的人体健康状态评估模型研究 被引量:1
11
作者 火久元 王虹阳 +1 位作者 巨涛 胡军 《计算机工程》 CAS CSCD 北大核心 2024年第7期372-380,共9页
为解决人体健康评估方法个性化监测不足的问题以及在满足不同场景下健康状态精细化评估的需求,需要一种基于多场景的人体健康状态评估方法来实现长期自动化监测。提出一种基于层次分析法(AHP)和熵权法(EWM)组合的多场景人体健康状态评... 为解决人体健康评估方法个性化监测不足的问题以及在满足不同场景下健康状态精细化评估的需求,需要一种基于多场景的人体健康状态评估方法来实现长期自动化监测。提出一种基于层次分析法(AHP)和熵权法(EWM)组合的多场景人体健康状态评估模型。首先采集人体在运动、休息、工作/学习和娱乐等4种不同场景下的健康监测指标数据,构建相应的评估指标体系。然后分别根据评估指标计算出AHP和EWM权重,再采用量子粒子群优化(QPSO)算法对AHP和EWM中的主客观权重进行分配,以确保评价指标占比的客观性。最后通过模糊综合评价法对人体健康状态进行评估和量化,并利用实际监测数据对方法的可靠性和稳定性进行验证。实验结果表明,在4种场景下所提方法的综合得分分别为63.78、59.83、58.71和59.21,表明在不同场景下该模型都具有较好的准确性和稳定性。根据评估结果,对测试者的身体状态评价结果进行分析,并给出一些健康建议。所提模型可全面了解人体在不同场景下的健康状况,并为人们提供科学的健康指导,从而为健康管理和疾病预防提供科学依据。 展开更多
关键词 健康状态 多重场景 层次分析法 熵权法 量子粒子群优化算法 模糊综合评价法
下载PDF
基于差分进化粒子群混合算法的多无人机协同区域搜索策略 被引量:2
12
作者 赖幸君 唐鑫 +2 位作者 林磊 王志胜 丛玉华 《弹箭与制导学报》 北大核心 2024年第1期89-97,共9页
为提高无人机群在未知环境中的区域搜索效率,提出一种多无人机协同区域搜索策略。首先,根据区域搜索任务需求,建立包含区域覆盖率、区域不确定度、目标存在概率三种属性的区域信息地图;其次,以最大化搜索效率、同时最小化无人机搜索过... 为提高无人机群在未知环境中的区域搜索效率,提出一种多无人机协同区域搜索策略。首先,根据区域搜索任务需求,建立包含区域覆盖率、区域不确定度、目标存在概率三种属性的区域信息地图;其次,以最大化搜索效率、同时最小化无人机搜索过程中的能耗为目标,建立无人机区域搜索滚动时域优化目标函数,指导无人机在线决策搜索路线;然后针对传统群智能优化算法易陷入局部最优的缺陷,设计差分进化粒子群混合算法在线求解该多目标优化问题,提高算法的寻优性能,从而提高无人机的搜索效率。最后,通过数值仿真实验,对所提算法进行验证,仿真结果表明,文中设计的基于差分进化粒子群混合算法的多无人机协同区域搜索策略与传统的群智能优化算法相比具有更高的区域搜索效率。 展开更多
关键词 多无人机 协同搜索 群智能算法 滚动时域优化 差分进化粒子群混合算法
下载PDF
基于随机增强量子粒子群算法的弹性波数值模拟 被引量:1
13
作者 朱孟权 刘洪 +2 位作者 王之洋 李幼铭 Yu Du-li 《Applied Geophysics》 SCIE CSCD 2024年第1期80-92,204,共14页
在本文中,我们提出了一种随机增强量子粒子群优化算法,并基于该随机增强量子粒子群算法提出了一种新的有限差分格式。随机增强量子粒子群优化算法具有明显的收敛速度优势,可以在第200代内收敛。在相同条件下,未改进的量子粒子群算法的... 在本文中,我们提出了一种随机增强量子粒子群优化算法,并基于该随机增强量子粒子群算法提出了一种新的有限差分格式。随机增强量子粒子群优化算法具有明显的收敛速度优势,可以在第200代内收敛。在相同条件下,未改进的量子粒子群算法的收敛速度远低于随机增强量子粒子群算法。数值频散分析表明,基于随机增强量子粒子群算法的优化有限差分格式具有更大的频谱覆盖范围并将精度误差控制在了有效范围之内,这意味着随机增强量子粒子群算法具有更好的搜索全局精确解的能力。最后,采用基于随机增强量子粒子群算法的优化有限差分格式对弹性波动方程进行数值模拟。数值模拟结果表明,基于随机增强量子粒子群算法的优化有限差分格式能有效压制数值频散。 展开更多
关键词 有限差分 量子粒子群算法 多参数优化
下载PDF
CQPSO-BP算法在风电机组齿轮箱故障诊断中的应用 被引量:11
14
作者 程加堂 艾莉 +1 位作者 段志梅 熊燕 《太阳能学报》 EI CAS CSCD 北大核心 2017年第8期2112-2116,共5页
为实现风电机组齿轮箱故障模式的有效识别,提出一种基于混沌量子粒子群优化BP神经网络(CQPSOBP)的故障诊断方法。在该算法中,利用混沌序列来初始化粒子的初始角位置,可提高种群的遍历性;通过引入变异操作,避免算法陷入早熟收敛,并依此来... 为实现风电机组齿轮箱故障模式的有效识别,提出一种基于混沌量子粒子群优化BP神经网络(CQPSOBP)的故障诊断方法。在该算法中,利用混沌序列来初始化粒子的初始角位置,可提高种群的遍历性;通过引入变异操作,避免算法陷入早熟收敛,并依此来对BP神经网络的初始权值和阈值进行优化。实例表明,同粒子群优化BP神经网络(PSO-BP)与BP网络的诊断结果相比,CQPSO-BP算法具有收敛速度快、识别精度高的优点,可有效用于风电机组齿轮箱的故障诊断系统中。 展开更多
关键词 风电机组 齿轮箱 故障诊断 混沌量子粒子群优化算法 BP神经网络
下载PDF
基于改进混合粒子群优化算法的多无人机协同围捕方法研究
15
作者 许诺 朱黔 +3 位作者 谢晓阳 喻涛 刘佳 刘思帆 《电光与控制》 CSCD 北大核心 2024年第9期1-5,共5页
针对多无人机协同围捕问题,在无人机运动学约束基础上,考虑各无人机应同时到达围捕位置,提出了多机协同围捕任务规划两层求解架构。在任务协调层通过改进混合粒子群优化方法,以各无人机同时到达指定围捕位置的最小时间为目标,优化调度... 针对多无人机协同围捕问题,在无人机运动学约束基础上,考虑各无人机应同时到达围捕位置,提出了多机协同围捕任务规划两层求解架构。在任务协调层通过改进混合粒子群优化方法,以各无人机同时到达指定围捕位置的最小时间为目标,优化调度给出多目标围捕方案;在航路规划层考虑无人机初始状态及运动学约束,通过Dubins曲线调整实现各无人机同时到达围捕位置。仿真结果表明了所提方法的有效性。 展开更多
关键词 多无人机 协同围捕 改进混合粒子群优化
下载PDF
自适应策略优化的粒子群优化算法在神经网络架构搜索中的应用
16
作者 程金芮 金瑾 +3 位作者 张朝龙 孔超 何嘉 张鑫 《计算机应用》 CSCD 北大核心 2024年第S01期60-64,共5页
针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与... 针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与局部信息的协同作用和智能切换学习策略。具体地,ARCLPSO利用全局和局部信息的协同作用令粒子向更优的方向移动,通过智能的切换粒子学习策略平衡粒子的搜索性能和收敛速度,提高搜索速度和搜索质量。在NAS-Bench-101数据集上的实验结果表明,ARCLPSO的收敛时间相较于传统进化算法(REA)和随机搜索(RS),分别减少了40.9%和55.2%。 展开更多
关键词 神经网络架构搜索 粒子群优化 进化算法 NAS-Bench-101 自适应的协作学习算法
下载PDF
计及不确定性的随机暂态稳定约束最优潮流
17
作者 刘颂凯 周倩 +3 位作者 杨超 阮肇华 张磊 袁铭洋 《电力系统及其自动化学报》 CSCD 北大核心 2024年第7期1-10,共10页
为应对电力系统中不确定性对系统安全稳定造成的显著影响,提出一种计及不确定性的随机暂态稳定约束最优潮流方法。首先,采用威布尔和正态分布分别描述风电和负荷两种不确定性变量。其次,设置相应的置信水平,基于机会约束理论建立相应的... 为应对电力系统中不确定性对系统安全稳定造成的显著影响,提出一种计及不确定性的随机暂态稳定约束最优潮流方法。首先,采用威布尔和正态分布分别描述风电和负荷两种不确定性变量。其次,设置相应的置信水平,基于机会约束理论建立相应的概率约束,以期望值形式表达目标函数,从而建立计及不确定性的随机暂态稳定约束最优潮流模型。然后,通过半不变量法和Gram-Charlier级数求取电力系统输出变量的累积分布函数,并利用改进量子粒子群算法进行求解。最后,算例分析验证了所提方法的优越性和有效性。 展开更多
关键词 不确定性 随机暂态稳定约束最优潮流 置信水平 半不变量法 量子粒子群优化算法
下载PDF
基于IQPSO-GA优化ANFIS模型的服务器故障预警方法
18
作者 李盛新 叶丰华 +2 位作者 李道童 张秀波 韩红瑞 《计算机测量与控制》 2024年第4期37-45,共9页
针对服务器底层部分业务类硬件故障对系统稳定运行的影响,提出一种改进的量子行为粒子群优化(IQPSO)与遗传算法(GA)相结合的混合元启发式优化算法对自适应神经模糊推理系统(ANFIS)参数进行训练,以获得更准确的ANFIS规则进行硬件故障预... 针对服务器底层部分业务类硬件故障对系统稳定运行的影响,提出一种改进的量子行为粒子群优化(IQPSO)与遗传算法(GA)相结合的混合元启发式优化算法对自适应神经模糊推理系统(ANFIS)参数进行训练,以获得更准确的ANFIS规则进行硬件故障预警的方法;首先,通过分析服务器业务与硬件相关参数之间的映射关系,通过采集的数据集对ANFIS模型进行训练构造预测模型;其次,考虑ANFIS在梯度计算过程中存在容易陷入局部最优值的问题,设计了一种IQPSO算法结合GA中的交叉和变异算子操作混合元启发算法全局搜索ANFIS规则参数;最后,通过一组后处理样本数据集对所提方法有效性和稳定性进行了检验;实验结果表明,该方法可有效预警服务器硬件故障,基于所提混合元启发优化算法获得的ANFIS模型具备更快的收敛速度和更高的全局搜索精度,与传统ANFIS模型相比泛化精度提高了47%以上。 展开更多
关键词 服务器 故障预警 自适应神经模糊推理系统 量子行为粒子群优化算法 遗传算法
下载PDF
基于CQPSO-LSSVM的网络入侵检测模型 被引量:19
19
作者 张拓 王建平 《计算机工程与应用》 CSCD 北大核心 2015年第2期113-116,155,共5页
为了提高网络入侵检测率,提出一种协同量子粒子群算法和最小二乘支持向量机的网络入侵检测模型(CQPSO-LSSVM)。将网络特征子集编码成量子粒子位置,入侵检测正确率作为特征子集优劣的评价标准,采用协同量子粒子群算法找到最优特征子集,... 为了提高网络入侵检测率,提出一种协同量子粒子群算法和最小二乘支持向量机的网络入侵检测模型(CQPSO-LSSVM)。将网络特征子集编码成量子粒子位置,入侵检测正确率作为特征子集优劣的评价标准,采用协同量子粒子群算法找到最优特征子集,采用最小二乘支持向量机建立网络入侵检测模型,并采用KDD CUP 99数据集进行仿真测试。结果表明,CQPSO-LSSVM获得了比其他入侵检测模型更高的检测效率和检测率。 展开更多
关键词 协同量子粒子群算法 最小二乘支持向量机 特征选择 网络入侵检测
下载PDF
基于改进量子粒子群优化算法的机器人逆运动学求解 被引量:1
20
作者 陈卓凡 周坤 +1 位作者 秦菲菲 王斌锐 《中国机械工程》 EI CAS CSCD 北大核心 2024年第2期293-304,共12页
针对工业机器人在逆运动学求解过程中存在的位姿奇异、解不唯一、求解精度低等问题,提出了一种改进量子粒子群算法。首先,利用D-H参数法建立机器人运动学模型,以机械臂末端最小位姿误差为主要优化目标,加入运动前后关节角变化最小、行... 针对工业机器人在逆运动学求解过程中存在的位姿奇异、解不唯一、求解精度低等问题,提出了一种改进量子粒子群算法。首先,利用D-H参数法建立机器人运动学模型,以机械臂末端最小位姿误差为主要优化目标,加入运动前后关节角变化最小、行程平稳连续的约束条件,设计了目标函数;其次,通过采用Levy飞行策略改进粒子更新方式、非线性地动态调整收缩膨胀因子、采用变权重方法计算最优平均位置等方法设计了一种改进量子粒子群优化(IQPSO)算法;然后,模拟单点位姿和连续轨迹两种不同的求解情况进行三种算法(IQPSO、APSO、QPSO)的仿真对比实验,结果表明IQPSO算法具有收敛速度快、求解精度高等优点;最后,将IQPSO算法用于机械臂本体进行实物验证,实验结果表明IQPSO算法求解出的插值点所组成的轨迹连续且平滑,进一步证明了该算法应用于实际运动控制中的稳定性和可行性。 展开更多
关键词 工业机器人 逆运动学求解 目标函数 改进量子粒子群优化算法
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部