In Mobile Communication Systems, inter-cell interference becomes one of the challenges that degrade the system’s performance, especially in the region with massive mobile users. The linear precoding schemes were prop...In Mobile Communication Systems, inter-cell interference becomes one of the challenges that degrade the system’s performance, especially in the region with massive mobile users. The linear precoding schemes were proposed to mitigate interferences between the base stations (inter-cell). These schemes are categorized into linear and non-linear;this study focused on linear precoding schemes, which are grounded into three types, namely Zero Forcing (ZF), Block Diagonalization (BD), and Signal Leakage Noise Ratio (SLNR). The study included the Cooperative Multi-cell Multi Input Multi Output (MIMO) System, whereby each Base Station serves more than one mobile station and all Base Stations on the system are assisted by each other by shared the Channel State Information (CSI). Based on the Multi-Cell Multiuser MIMO system, each Base Station on the cell is intended to maximize the data transmission rate by its mobile users by increasing the Signal Interference to Noise Ratio after the interference has been mitigated due to the usefully of linear precoding schemes on the transmitter. Moreover, these schemes used different approaches to mitigate interference. This study mainly concentrates on evaluating the performance of these schemes through the channel distribution models such as Ray-leigh and Rician included in the presence of noise errors. The results show that the SLNR scheme outperforms ZF and BD schemes overall scenario. This implied that when the value of SNR increased the performance of SLNR increased by 21.4% and 45.7% for ZF and BD respectively.展开更多
Wireless sensor network (WSN) requires robust and efficient communication protocols to minimise delay and save energy. The lifetime of WSN can be maximised by selecting proper medium access control (MAC) scheme de...Wireless sensor network (WSN) requires robust and efficient communication protocols to minimise delay and save energy. The lifetime of WSN can be maximised by selecting proper medium access control (MAC) scheme depending on the contention level of the network. The throughput of WSN however reduces due to channel fading effects even with the proper design of MAC protocol. Hence this paper proposes a new MAC scheme for enabling packet transmission using cooperative multi-input multi-output (MIMO) utilising space time codes(STC) such as space time block code (STBC), space time trellis code (STTC) to achieve higher energy savings and lower delay by allowing nodes to transmit and receive information jointly. The performance of the proposed MAC protocol is evaluated in terms of transmission error probability, energy consumption and delay. Simulation results show that the proposed cooperative MIMO MAC protocol provides reliable and efficient transmission by leveraging MIMO diversity gains.展开更多
The FRF estimator based on the errors-in-variables (EV) model of multi-input multi-output (MIMO) system is presented to reduce the bias error of FRF HI estimator. The FRF HI estimator is influenced by the noises i...The FRF estimator based on the errors-in-variables (EV) model of multi-input multi-output (MIMO) system is presented to reduce the bias error of FRF HI estimator. The FRF HI estimator is influenced by the noises in the inputs of the system and generates an under-estimation of the true FRF. The FRF estimator based on the EV model takes into account the errors in both the inputs and outputs of the system and would lead to more accurate FRF estimation. The FRF estimator based on the EV model is applied to the waveform replication on the 6-DOF (degree-of-freedom) hydraulic vibration table. The result shows that it is favorable to improve the control precision of the MIMO vibration control system.展开更多
To solve the synchronization and tracking problems,a cooperative control scheme is proposed for a class of higher-order multi-input and multi-output(MIMO)nonlinear multi-agent systems(MASs)subjected to uncertainties a...To solve the synchronization and tracking problems,a cooperative control scheme is proposed for a class of higher-order multi-input and multi-output(MIMO)nonlinear multi-agent systems(MASs)subjected to uncertainties and external disturbances.First,coupled relationships among Laplace matrix,leader-following adjacency matrix and consensus error are analyzed based on undirected graph.Furthermore,nonlinear disturbance observers(NDOs)are designed to estimate compounded disturbances in MASs,and a distributed cooperative anti-disturbance control protocol is proposed for high-order MIMO nonlinear MASs based on the outputs of NDOs and dynamic surface control approach.Finally,the feasibility and effectiveness of the proposed scheme are proven based on Lyapunov stability theory and simulation experiments.展开更多
In this paper,a hybrid integrated broadband Doherty power amplifier(DPA)based on a multi-chip module(MCM),whose active devices are fabricated using the gallium nitride(GaN)process and whose passive circuits are fabric...In this paper,a hybrid integrated broadband Doherty power amplifier(DPA)based on a multi-chip module(MCM),whose active devices are fabricated using the gallium nitride(GaN)process and whose passive circuits are fabricated using the gallium arsenide(GaAs)integrated passive device(IPD)process,is proposed for 5G massive multiple-input multiple-output(MIMO)application.An inverted DPA structure with a low-Q output network is proposed to achieve better bandwidth performance,and a single-driver architecture is adopted for a chip with high gain and small area.The proposed DPA has a bandwidth of 4.4-5.0 GHz that can achieve a saturation of more than 45.0 dBm.The gain compression from 37 dBm to saturation power is less than 4 dB,and the average power-added efficiency(PAE)is 36.3%with an 8.5 dB peak-to-average power ratio(PAPR)in 4.5-5.0 GHz.The measured adjacent channel power ratio(ACPR)is better than50 dBc after digital predistortion(DPD),exhibiting satisfactory linearity.展开更多
We propose a transfer-learning multi-input multi-output(TL-MIMO)scheme to significantly reduce the required training complexity for converging the equalizers in mode-division multiplexing(MDM)systems.Based on a built ...We propose a transfer-learning multi-input multi-output(TL-MIMO)scheme to significantly reduce the required training complexity for converging the equalizers in mode-division multiplexing(MDM)systems.Based on a built three-mode(LP01,LP11a,and LP11b)multiplexed experimental system,we thoughtfully investigate the TL-MIMO performances on the three-typed data,collecting from different sampling times,launching optical powers,and inputting optical signal-to-noise ratios(OSNRs).A dramatic reduction of approximately 40%–83.33%in the required training complexity is achieved in all three scenarios.Furthermore,the good stability of TL-MIMO in both the launched powers and OSNR test bands has also been proved.展开更多
In this paper,physical layer security techniques are investigated for cooperative multi-input multi-output(C-MIMO),which operates as an underlaid cognitive radio system that coexists with a primary user(PU).The underl...In this paper,physical layer security techniques are investigated for cooperative multi-input multi-output(C-MIMO),which operates as an underlaid cognitive radio system that coexists with a primary user(PU).The underlaid secrecy paradigm is enabled by improving the secrecy rate towards the C-MIMO receiver and reducing the interference towards the PU.Such a communication model is especially suitable for implementing Industrial Internet of Things(IIoT)systems in the unlicensed spectrum,which can trade off spectral efficiency and information secrecy.To this end,we propose an eigenspace-adaptive precoding(EAP)method and formulate the secrecy rate optimization problem,which is subject to both the single device power constraint and the interference power constraint.This precoder design is enabled by decomposing the original optimization problem into eigenspace selection and power allocation sub-problems.Herein,the eigenvectors are adaptively selected by the transmitter according to the channel conditions of the underlaid users and the PUs.In addition,a simplified EAP method is proposed for large-dimensional C-MIMO transmission,exploiting the additional spatial degree of freedom for a low-complexity secrecy precoder design.Numerical results show that by transmitting signal and artificial noise in the properly selected eigenspace,C-MIMO can eliminate the secrecy outage and outperforms the fixed eigenspace precoding methods.Moreover,the proposed simplified EAP method for the large-dimensional C-MIMO can significantly improve the secrecy rate.展开更多
A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set process...A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set processor(ASIP), which uses TSE algorithm instead of resource-consuming reciprocal and reciprocal square root(RSR) operations.The aim is to give a high performance implementation for MMSE and QRD in one programmable platform simultaneously.Furthermore, instruction set architecture(ISA) and the allocation of data paths in single instruction multiple data-very long instruction word(SIMD-VLIW) architecture are provided, offering more data parallelism and instruction parallelism for different dimension matrices and operation types.Meanwhile, multiple level numerical precision can be achieved with flexible table size and expansion order in TSE ISA.The ASIP has been implemented to a 28 nm CMOS process and frequency reaches 800 MHz.Experimental results show that the proposed design provides perfect numerical precision within the fixed bit-width of the ASIP, higher matrix processing rate better than the requirements of 5G system and more rate-area efficiency comparable with ASIC implementations.展开更多
A novel nonlinear multi-input multi-output MIMO detection algorithm is proposed which is referred to as an ordered successive noise projection cancellation OSNPC algorithm. It is capable of improving the computation p...A novel nonlinear multi-input multi-output MIMO detection algorithm is proposed which is referred to as an ordered successive noise projection cancellation OSNPC algorithm. It is capable of improving the computation performance of the MIMO detector with the conventional ordered successive interference cancellation OSIC algorithm. In contrast to the OSIC in which the known interferences in the input signal vector are successively cancelled the OSNPC successively cancels the known noise projections from the decision statistic vector. Analysis indicates that the OSNPC is equivalent to the OSIC in error performance but it has significantly less complexity in computation.Furthermore when the OSNPC is applied to the MIMO detection with the preprocessing of dual lattice reduction DLR the computational complexity of the proposed OSNPC-based DLR-aided detector is further reduced due to the avoidance of the inverse of the reduced basis of the dual lattice in computation compared to that of the OSIC-based one. Simulation results validate the theoretical conclusions with regard to both the performance and complexity of the proposed MIMO detection scheme.展开更多
Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower tri...Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower triangular matrix is derived from Cholesky decomposition of a reference spectrum matrix. The diagonal elements of the lower triangular matrix (DELTM) may become negative. These negative values have no meaning in physical significance and can cause divergence of auto-power spectrum control. A proportional root mean square control algorithm (PRMSCA) provides another method to avoid the divergence caused by negative values of DELTM, but PRMSCA cannot control the cross-power spectrum. A new control algorithm named matrix power control algorithm (MPCA) is proposed in the paper. MPCA can guarantee that DELTM is always positive in the auto-power spectrum control. MPCA can also control the cross-power spectrum. After these three control algorithms are analyzed, three-input three-output random vibration control tests are implemented on a three-axis vibration shaker. The results show the validity of the proposed MPCA.展开更多
A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified ...A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multioutput kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well.展开更多
Noises always disturb the control effect of an environment test especially in multi-input multi-output(MIMO) systems. If the frequency response function matrices are ill-conditioned, the noises in the driving forces w...Noises always disturb the control effect of an environment test especially in multi-input multi-output(MIMO) systems. If the frequency response function matrices are ill-conditioned, the noises in the driving forces will be amplified and the response spectral lines may awfully exceed their tolerances. Most of the major biases between the response spectra and the reference spectra are produced by the amplified noises. However, ordinary control algorithms can hardly reduce the level of noises. The influences of the noises on both the auto- and cross-power spectra are analyzed in this paper. As a conventional frequency domain method on the inverse problem, the Tikhonov filter is adopted in the environment test to suppress the exceeding spectral lines. By altering regularization parameters gradually, the auto-power spectra can be improved in a closed control loop. Instead of using the traditional way of selecting regularization parameters, we observe the coherence change to estimate noise eliminations. Incidentally, the requirement of coherence control can be realized. The errors of the phase are then studied and a phase control algorithm is introduced at the end as a supplement of cross-power spectra control. The Tikhonov filter and the proposed phase control algorithm are tested numerically and experimentally. The results show that the noises in the vicinity of lightly damped resonant peaks are more stubborn. The response spectra are able to be greatly improved by the combination of these two methods.展开更多
A new methodology for multi-step-ahead forecasting was proposed herein which combined the wavelet transform(WT), artificial neural network(ANN) and forecasting strategies based on the changing characteristics of avail...A new methodology for multi-step-ahead forecasting was proposed herein which combined the wavelet transform(WT), artificial neural network(ANN) and forecasting strategies based on the changing characteristics of available parking spaces(APS). First, several APS time series were decomposed and reconstituted by the wavelet transform. Then, using an artificial neural network, the following five strategies for multi-step-ahead time series forecasting were used to forecast the reconstructed time series: recursive strategy, direct strategy, multi-input multi-output(MIMO) strategy, DIRMO strategy(a combination of the direct and MIMO strategies), and newly proposed recursive multi-input multi-output(RECMO) strategy which is a combination of the recursive and MIMO strategies. Finally, integrating the predicted results with the reconstructed time series produced the final forecasted available parking spaces. Three findings appear to be consistently supported by the experimental results. First, applying the wavelet transform to multi-step ahead available parking spaces forecasting can effectively improve the forecasting accuracy. Second, the forecasting resulted from the DIRMO and RECMO strategies is more accurate than that of the other strategies. Finally, the RECMO strategy requires less model training time than the DIRMO strategy and consumes the least amount of training time among five forecasting strategies.展开更多
In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-s...In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modelingmethod are combined in this model. Data-driven modeling method based on limited memory partial least squares(LM-PLS) al.gorithm is used to build soft-senor models for some secondary variables.then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practicalprocess; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process.展开更多
In this paper a method that combines transmit antenna selection and reduced-constellation detection in spatially correlated Multi-Input Multi-Output (MIMO) fading channels is presented. To mitigate the performance d...In this paper a method that combines transmit antenna selection and reduced-constellation detection in spatially correlated Multi-Input Multi-Output (MIMO) fading channels is presented. To mitigate the performance degradation caused by the use of antenna selection that is based on correlation among columns, an iterative receiver scheme that uses only a subset of the constellation points close to the expected symbol vahle estimated in the previous iteration is proposed. The size of the subset can adapt to the maximum correlation of the sub-matrix after the simple antenna selection. Furthermore, the error rate performance of the scheme under linear Miniinutn Mean Square Error (MMSE) or Ordered Successive Interference Cancellation (OSIC) for the first run detection and different interleaver lengths is investigated while the transnlit antenna selection is considered. The simulation results show a significant advantage both for implementation complexity and for error rate performance under a fixed data rate.展开更多
Based on the array architecture of multiple transmitting/receiving antennas, Multi-Input Multi-Output (MIMO) radar provides a new mechanism for radar imaging technology. In order to explore the processing approach to ...Based on the array architecture of multiple transmitting/receiving antennas, Multi-Input Multi-Output (MIMO) radar provides a new mechanism for radar imaging technology. In order to explore the processing approach to this imaging mechanism, the two dimensional (2D) imaging model of MIMO radar is established first, and the spatial sampling ability is analyzed from the concept of spatial convolution of the antenna elements. The target spatial spectral filling format of MIMO radar with monochromatic transmitting signal is described. High-resolution imaging capability of MIMO radar is analyzed according to spatial spectral coverage and the corresponding imaging algorithm is presented. Finally, field imaging experiment is used to demonstrate the superior imaging performance of MIMO radar.展开更多
An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the no...An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the nonlinear system and a recurrent neural network to minimize the difference between the linear model and the real nonlinear system. Because the current control input is not included in the input vector of recurrent neural network (RNN), the inverse control law can be calculated directly. This scheme can be used in real-time nonlinear single-input single-output (SISO) and multi-input multi-output (MIMO) system control with less computation work. Simulation studies have shown that this scheme is simple and affects good control accuracy and robustness.展开更多
In this study, a novel approach for dynamic modeling and closed-loop control of hybrid grid-connected renewable energy system with multi-input multi-output(MIMO) controller is proposed. The studied converter includes ...In this study, a novel approach for dynamic modeling and closed-loop control of hybrid grid-connected renewable energy system with multi-input multi-output(MIMO) controller is proposed. The studied converter includes two parallel DC-DC boost converters, which are connected into the power grid through a single-phase H-bridge inverter. The proposed MIMO controller is developed for maximum power point tracking of photovoltaic(PV)/fuel-cell(FC) input power sources and output power control of the grid-connected DC-AC inverter. Considering circuit topology of the system, a unique MIMO model is proposed for the analysis of the entire system. A unique model of the system includes all of the circuit state variables in DCDC and DC-AC converters. In fact, from the viewpoint of closed-loop controller design, the hybrid grid-connected energy system is an MIMO system. The control inputs of the system are duty cycles of the DC-DC boost converters and the amplitude modulation index of DC-AC inverters. Furthermore, the control outputs are the output power of the PV/FC input power sources as well as AC power injected into the power grid. After the development of the unique model for the entire system, a decoupling network is introduced for system input-output linearization due to inherent connection of the control outputs with all of the system inputs. Considering the decoupled model and small signal linearization, the required linear controllers are designed to adjust the outputs. Finally, to evaluate the accuracy and effectiveness of the designed controllers, the PV/FC based grid-connected system is simulated using the MATLAB/Simulink toolbox.展开更多
文摘In Mobile Communication Systems, inter-cell interference becomes one of the challenges that degrade the system’s performance, especially in the region with massive mobile users. The linear precoding schemes were proposed to mitigate interferences between the base stations (inter-cell). These schemes are categorized into linear and non-linear;this study focused on linear precoding schemes, which are grounded into three types, namely Zero Forcing (ZF), Block Diagonalization (BD), and Signal Leakage Noise Ratio (SLNR). The study included the Cooperative Multi-cell Multi Input Multi Output (MIMO) System, whereby each Base Station serves more than one mobile station and all Base Stations on the system are assisted by each other by shared the Channel State Information (CSI). Based on the Multi-Cell Multiuser MIMO system, each Base Station on the cell is intended to maximize the data transmission rate by its mobile users by increasing the Signal Interference to Noise Ratio after the interference has been mitigated due to the usefully of linear precoding schemes on the transmitter. Moreover, these schemes used different approaches to mitigate interference. This study mainly concentrates on evaluating the performance of these schemes through the channel distribution models such as Ray-leigh and Rician included in the presence of noise errors. The results show that the SLNR scheme outperforms ZF and BD schemes overall scenario. This implied that when the value of SNR increased the performance of SLNR increased by 21.4% and 45.7% for ZF and BD respectively.
文摘Wireless sensor network (WSN) requires robust and efficient communication protocols to minimise delay and save energy. The lifetime of WSN can be maximised by selecting proper medium access control (MAC) scheme depending on the contention level of the network. The throughput of WSN however reduces due to channel fading effects even with the proper design of MAC protocol. Hence this paper proposes a new MAC scheme for enabling packet transmission using cooperative multi-input multi-output (MIMO) utilising space time codes(STC) such as space time block code (STBC), space time trellis code (STTC) to achieve higher energy savings and lower delay by allowing nodes to transmit and receive information jointly. The performance of the proposed MAC protocol is evaluated in terms of transmission error probability, energy consumption and delay. Simulation results show that the proposed cooperative MIMO MAC protocol provides reliable and efficient transmission by leveraging MIMO diversity gains.
基金This project is supported by Program for New Century Excellent Talents in University,China(No.NCET-04-0325).
文摘The FRF estimator based on the errors-in-variables (EV) model of multi-input multi-output (MIMO) system is presented to reduce the bias error of FRF HI estimator. The FRF HI estimator is influenced by the noises in the inputs of the system and generates an under-estimation of the true FRF. The FRF estimator based on the EV model takes into account the errors in both the inputs and outputs of the system and would lead to more accurate FRF estimation. The FRF estimator based on the EV model is applied to the waveform replication on the 6-DOF (degree-of-freedom) hydraulic vibration table. The result shows that it is favorable to improve the control precision of the MIMO vibration control system.
基金National Natural Science Foundation of China(No.61963029)Jiangxi Provincial Natural Science Foundation(Nos.20224BAB202027 and 20232ACB202007)。
文摘To solve the synchronization and tracking problems,a cooperative control scheme is proposed for a class of higher-order multi-input and multi-output(MIMO)nonlinear multi-agent systems(MASs)subjected to uncertainties and external disturbances.First,coupled relationships among Laplace matrix,leader-following adjacency matrix and consensus error are analyzed based on undirected graph.Furthermore,nonlinear disturbance observers(NDOs)are designed to estimate compounded disturbances in MASs,and a distributed cooperative anti-disturbance control protocol is proposed for high-order MIMO nonlinear MASs based on the outputs of NDOs and dynamic surface control approach.Finally,the feasibility and effectiveness of the proposed scheme are proven based on Lyapunov stability theory and simulation experiments.
基金supported in part by the National Key Research and Development Program of China(2021YFA0716601)the National Science Fund(62225111).
文摘In this paper,a hybrid integrated broadband Doherty power amplifier(DPA)based on a multi-chip module(MCM),whose active devices are fabricated using the gallium nitride(GaN)process and whose passive circuits are fabricated using the gallium arsenide(GaAs)integrated passive device(IPD)process,is proposed for 5G massive multiple-input multiple-output(MIMO)application.An inverted DPA structure with a low-Q output network is proposed to achieve better bandwidth performance,and a single-driver architecture is adopted for a chip with high gain and small area.The proposed DPA has a bandwidth of 4.4-5.0 GHz that can achieve a saturation of more than 45.0 dBm.The gain compression from 37 dBm to saturation power is less than 4 dB,and the average power-added efficiency(PAE)is 36.3%with an 8.5 dB peak-to-average power ratio(PAPR)in 4.5-5.0 GHz.The measured adjacent channel power ratio(ACPR)is better than50 dBc after digital predistortion(DPD),exhibiting satisfactory linearity.
基金supported by the National Key R&D Program of China(No.2018YFB1801001)the Royal Society International Exchange Grant(No.IEC\NSFC\211244).
文摘We propose a transfer-learning multi-input multi-output(TL-MIMO)scheme to significantly reduce the required training complexity for converging the equalizers in mode-division multiplexing(MDM)systems.Based on a built three-mode(LP01,LP11a,and LP11b)multiplexed experimental system,we thoughtfully investigate the TL-MIMO performances on the three-typed data,collecting from different sampling times,launching optical powers,and inputting optical signal-to-noise ratios(OSNRs).A dramatic reduction of approximately 40%–83.33%in the required training complexity is achieved in all three scenarios.Furthermore,the good stability of TL-MIMO in both the launched powers and OSNR test bands has also been proved.
基金Z.ZHENG is supported by the National Natural Science Foundation of China(No.61901033)the Natural Science Foundation of Beijing(No.L212031)+1 种基金X.Y.BAO is supported by the China Academy of Information and Communications Technology,Y.Z.HUANG is supported by the National Natural Science Foundation of China(No.61971474)the Beijing Nova Program(No.Z201100006820121)。
文摘In this paper,physical layer security techniques are investigated for cooperative multi-input multi-output(C-MIMO),which operates as an underlaid cognitive radio system that coexists with a primary user(PU).The underlaid secrecy paradigm is enabled by improving the secrecy rate towards the C-MIMO receiver and reducing the interference towards the PU.Such a communication model is especially suitable for implementing Industrial Internet of Things(IIoT)systems in the unlicensed spectrum,which can trade off spectral efficiency and information secrecy.To this end,we propose an eigenspace-adaptive precoding(EAP)method and formulate the secrecy rate optimization problem,which is subject to both the single device power constraint and the interference power constraint.This precoder design is enabled by decomposing the original optimization problem into eigenspace selection and power allocation sub-problems.Herein,the eigenvectors are adaptively selected by the transmitter according to the channel conditions of the underlaid users and the PUs.In addition,a simplified EAP method is proposed for large-dimensional C-MIMO transmission,exploiting the additional spatial degree of freedom for a low-complexity secrecy precoder design.Numerical results show that by transmitting signal and artificial noise in the properly selected eigenspace,C-MIMO can eliminate the secrecy outage and outperforms the fixed eigenspace precoding methods.Moreover,the proposed simplified EAP method for the large-dimensional C-MIMO can significantly improve the secrecy rate.
基金Supported by the Industrial Internet Innovation and Development Project of Ministry of Industry and Information Technology (No.GHBJ2004)。
文摘A Taylor series expansion(TSE) based design for minimum mean-square error(MMSE) and QR decomposition(QRD) of multi-input and multi-output(MIMO) systems is proposed based on application specific instruction set processor(ASIP), which uses TSE algorithm instead of resource-consuming reciprocal and reciprocal square root(RSR) operations.The aim is to give a high performance implementation for MMSE and QRD in one programmable platform simultaneously.Furthermore, instruction set architecture(ISA) and the allocation of data paths in single instruction multiple data-very long instruction word(SIMD-VLIW) architecture are provided, offering more data parallelism and instruction parallelism for different dimension matrices and operation types.Meanwhile, multiple level numerical precision can be achieved with flexible table size and expansion order in TSE ISA.The ASIP has been implemented to a 28 nm CMOS process and frequency reaches 800 MHz.Experimental results show that the proposed design provides perfect numerical precision within the fixed bit-width of the ASIP, higher matrix processing rate better than the requirements of 5G system and more rate-area efficiency comparable with ASIC implementations.
基金The National Science and Technology Major Project(No.2012ZX03004005-003)the National Natural Science Foundation of China(No.61171081,61201175)the Innovation Technology Fund of Jiangsu Province(No.BC2012006)
文摘A novel nonlinear multi-input multi-output MIMO detection algorithm is proposed which is referred to as an ordered successive noise projection cancellation OSNPC algorithm. It is capable of improving the computation performance of the MIMO detector with the conventional ordered successive interference cancellation OSIC algorithm. In contrast to the OSIC in which the known interferences in the input signal vector are successively cancelled the OSNPC successively cancels the known noise projections from the decision statistic vector. Analysis indicates that the OSNPC is equivalent to the OSIC in error performance but it has significantly less complexity in computation.Furthermore when the OSNPC is applied to the MIMO detection with the preprocessing of dual lattice reduction DLR the computational complexity of the proposed OSNPC-based DLR-aided detector is further reduced due to the avoidance of the inverse of the reduced basis of the dual lattice in computation compared to that of the OSIC-based one. Simulation results validate the theoretical conclusions with regard to both the performance and complexity of the proposed MIMO detection scheme.
基金National Natural Science Foundation of China (10972104) The Fundamental Research Funds for NUAA(NS2010007)
文摘Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower triangular matrix is derived from Cholesky decomposition of a reference spectrum matrix. The diagonal elements of the lower triangular matrix (DELTM) may become negative. These negative values have no meaning in physical significance and can cause divergence of auto-power spectrum control. A proportional root mean square control algorithm (PRMSCA) provides another method to avoid the divergence caused by negative values of DELTM, but PRMSCA cannot control the cross-power spectrum. A new control algorithm named matrix power control algorithm (MPCA) is proposed in the paper. MPCA can guarantee that DELTM is always positive in the auto-power spectrum control. MPCA can also control the cross-power spectrum. After these three control algorithms are analyzed, three-input three-output random vibration control tests are implemented on a three-axis vibration shaker. The results show the validity of the proposed MPCA.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX17_0234)
文摘A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multioutput kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well.
基金supported by the Fundamental Research Funds for the Central Universities (No. NS2015008)the corresponding work was performed in the State Key Laboratory of Mechanics and Control of Mechanical Structures
文摘Noises always disturb the control effect of an environment test especially in multi-input multi-output(MIMO) systems. If the frequency response function matrices are ill-conditioned, the noises in the driving forces will be amplified and the response spectral lines may awfully exceed their tolerances. Most of the major biases between the response spectra and the reference spectra are produced by the amplified noises. However, ordinary control algorithms can hardly reduce the level of noises. The influences of the noises on both the auto- and cross-power spectra are analyzed in this paper. As a conventional frequency domain method on the inverse problem, the Tikhonov filter is adopted in the environment test to suppress the exceeding spectral lines. By altering regularization parameters gradually, the auto-power spectra can be improved in a closed control loop. Instead of using the traditional way of selecting regularization parameters, we observe the coherence change to estimate noise eliminations. Incidentally, the requirement of coherence control can be realized. The errors of the phase are then studied and a phase control algorithm is introduced at the end as a supplement of cross-power spectra control. The Tikhonov filter and the proposed phase control algorithm are tested numerically and experimentally. The results show that the noises in the vicinity of lightly damped resonant peaks are more stubborn. The response spectra are able to be greatly improved by the combination of these two methods.
基金Project(51561135003)supported by the International Cooperation and Exchange of the National Natural Science Foundation of ChinaProject(51338003)supported by the Key Project of National Natural Science Foundation of China
文摘A new methodology for multi-step-ahead forecasting was proposed herein which combined the wavelet transform(WT), artificial neural network(ANN) and forecasting strategies based on the changing characteristics of available parking spaces(APS). First, several APS time series were decomposed and reconstituted by the wavelet transform. Then, using an artificial neural network, the following five strategies for multi-step-ahead time series forecasting were used to forecast the reconstructed time series: recursive strategy, direct strategy, multi-input multi-output(MIMO) strategy, DIRMO strategy(a combination of the direct and MIMO strategies), and newly proposed recursive multi-input multi-output(RECMO) strategy which is a combination of the recursive and MIMO strategies. Finally, integrating the predicted results with the reconstructed time series produced the final forecasted available parking spaces. Three findings appear to be consistently supported by the experimental results. First, applying the wavelet transform to multi-step ahead available parking spaces forecasting can effectively improve the forecasting accuracy. Second, the forecasting resulted from the DIRMO and RECMO strategies is more accurate than that of the other strategies. Finally, the RECMO strategy requires less model training time than the DIRMO strategy and consumes the least amount of training time among five forecasting strategies.
基金Supported by the National Natural Science Foundation of China (No.60421002) and the New Century 151 Talent Project of Zhejiang Province.
文摘In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modelingmethod are combined in this model. Data-driven modeling method based on limited memory partial least squares(LM-PLS) al.gorithm is used to build soft-senor models for some secondary variables.then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practicalprocess; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process.
基金Supported by the National Natural Science Foundation of China (No.60496311)China High-Tech 863 Plan (No.2006AA01Z264).
文摘In this paper a method that combines transmit antenna selection and reduced-constellation detection in spatially correlated Multi-Input Multi-Output (MIMO) fading channels is presented. To mitigate the performance degradation caused by the use of antenna selection that is based on correlation among columns, an iterative receiver scheme that uses only a subset of the constellation points close to the expected symbol vahle estimated in the previous iteration is proposed. The size of the subset can adapt to the maximum correlation of the sub-matrix after the simple antenna selection. Furthermore, the error rate performance of the scheme under linear Miniinutn Mean Square Error (MMSE) or Ordered Successive Interference Cancellation (OSIC) for the first run detection and different interleaver lengths is investigated while the transnlit antenna selection is considered. The simulation results show a significant advantage both for implementation complexity and for error rate performance under a fixed data rate.
文摘Based on the array architecture of multiple transmitting/receiving antennas, Multi-Input Multi-Output (MIMO) radar provides a new mechanism for radar imaging technology. In order to explore the processing approach to this imaging mechanism, the two dimensional (2D) imaging model of MIMO radar is established first, and the spatial sampling ability is analyzed from the concept of spatial convolution of the antenna elements. The target spatial spectral filling format of MIMO radar with monochromatic transmitting signal is described. High-resolution imaging capability of MIMO radar is analyzed according to spatial spectral coverage and the corresponding imaging algorithm is presented. Finally, field imaging experiment is used to demonstrate the superior imaging performance of MIMO radar.
基金Supported by the National Natural Science Foundation of China (60575009, 60574036)
文摘An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the nonlinear system and a recurrent neural network to minimize the difference between the linear model and the real nonlinear system. Because the current control input is not included in the input vector of recurrent neural network (RNN), the inverse control law can be calculated directly. This scheme can be used in real-time nonlinear single-input single-output (SISO) and multi-input multi-output (MIMO) system control with less computation work. Simulation studies have shown that this scheme is simple and affects good control accuracy and robustness.
基金supported by Islamic Azad University–Ardabil Branch。
文摘In this study, a novel approach for dynamic modeling and closed-loop control of hybrid grid-connected renewable energy system with multi-input multi-output(MIMO) controller is proposed. The studied converter includes two parallel DC-DC boost converters, which are connected into the power grid through a single-phase H-bridge inverter. The proposed MIMO controller is developed for maximum power point tracking of photovoltaic(PV)/fuel-cell(FC) input power sources and output power control of the grid-connected DC-AC inverter. Considering circuit topology of the system, a unique MIMO model is proposed for the analysis of the entire system. A unique model of the system includes all of the circuit state variables in DCDC and DC-AC converters. In fact, from the viewpoint of closed-loop controller design, the hybrid grid-connected energy system is an MIMO system. The control inputs of the system are duty cycles of the DC-DC boost converters and the amplitude modulation index of DC-AC inverters. Furthermore, the control outputs are the output power of the PV/FC input power sources as well as AC power injected into the power grid. After the development of the unique model for the entire system, a decoupling network is introduced for system input-output linearization due to inherent connection of the control outputs with all of the system inputs. Considering the decoupled model and small signal linearization, the required linear controllers are designed to adjust the outputs. Finally, to evaluate the accuracy and effectiveness of the designed controllers, the PV/FC based grid-connected system is simulated using the MATLAB/Simulink toolbox.