The formation of hybrid underwater gliders has advantages in sustained ocean observation with high resolution and more adaptation for complicated ocean tasks. However, the current work mostly focused on the traditiona...The formation of hybrid underwater gliders has advantages in sustained ocean observation with high resolution and more adaptation for complicated ocean tasks. However, the current work mostly focused on the traditional gliders and AUVs.The research on control strategy and energy consumption minimization for the hybrid gliders is necessary both in methodology and experiment. A multi-layer coordinate control strategy is developed for the fleet of hybrid underwater gliders to control the gliders’ motion and formation geometry with optimized energy consumption. The inner layer integrated in the onboard controller and the outer layer integrated in the ground control center or the deck controller are designed. A coordinate control model is proposed based on multibody theory through adoption of artificial potential fields. Considering the existence of ocean flow, a hybrid motion energy consumption model is constructed and an optimization method is designed to obtain the heading angle, net buoyancy, gliding angle and the rotate speed of screw propeller to minimize the motion energy with consideration of the ocean flow. The feasibility of the coordinate control system and motion optimization method has been verified both by simulation and sea trials. Simulation results show the regularity of energy consumption with the control variables. The fleet of three Petrel-Ⅱ gliders developed by Tianjin University is deployed in the South China Sea. The trajectory error of each glider is less than 2.5 km, the formation shape error between each glider is less than 2 km, and the difference between actual energy consumption and the simulated energy consumption is less than 24% actual energy. The results of simulation and the sea trial prove the feasibility of the proposed coordinate control strategy and energy optimization method. In conclusion, a coordinate control system and a motion optimization method is studied, which can be used for reference in theoretical research and practical fleet operation for both the traditional gliders and hybrid gliders.展开更多
In the three-wire welding system, a welding process consists of the operations of four devices, namely three welding machines and one bogie. The operations need to be synchronized by a numerical coordinate controller ...In the three-wire welding system, a welding process consists of the operations of four devices, namely three welding machines and one bogie. The operations need to be synchronized by a numerical coordinate controller ( NCC ). In this paper, we will discuss a tnsk-job-procedure cubic program structure. Under this structure, the devices are synchronized and isolated at the same time. This cubic program structure can also be used as a reference for other multi-device or multi-unit manufacturing processes.展开更多
A novel initiative mating device, which has four 2-degree manipulators around the mating skirt, is proposed to mate between a skirt of AUV (autonomons underwater vehicle) and a disabled submarine. The primary functi...A novel initiative mating device, which has four 2-degree manipulators around the mating skirt, is proposed to mate between a skirt of AUV (autonomons underwater vehicle) and a disabled submarine. The primary function of the device is to keep exact mating between skirt and disabled submarine in a badly sub sea environment. According to the characteristic of rescue, an automaton model is brought forward to describe the mating proceed between AUV and manipulators. The coordinated control is implemented by the TDES (time discrete event system). After taking into account the time problem, it is a useful method to control mating by sinmlation testing. The result shows that it reduces about 70 seconds after using intelligent co-ordinate control based on TDES through the whole mating procedure.展开更多
Four-wheeled,individual-driven,nonholonomic structured mobile robots are widely used in industries for automated work,inspection and explora-tion purposes.The trajectory tracking control of the four-wheel individual-d...Four-wheeled,individual-driven,nonholonomic structured mobile robots are widely used in industries for automated work,inspection and explora-tion purposes.The trajectory tracking control of the four-wheel individual-driven mobile robot is one of the most blooming research topics due to its nonholonomic structure.The wheel velocities are separately adjusted to follow the trajectory in the old-fashioned kinematic control of skid-steered mobile robots.However,there is no consideration for robot dynamics when using a kinematic controller that solely addresses the robot chassis’s motion.As a result,the mobile robot has lim-ited performance,such as chattering during curved movement.In this research work,a three-tiered adaptive robust control with fuzzy parameter estimation,including dynamic modeling,direct torque control and wheel slip control is pro-posed.Fuzzy logic-based parameter estimation is a valuable tool for adjusting adaptive robust controller(ARC)parameters and tracking the trajectories with less tracking error as well as high tracking accuracy.This research considers the O type and 8 type trajectories for performance analysis of the proposed novel control technique.Our suggested approach outperforms the existing control methods such as Fuzzy,proportional–integral–derivative(PID)and adaptive robust controller with discrete projection(ARC–DP).The experimental results show that the scheduled performance index decreases by 2.77%and 4.76%.All the experimen-tal simulations obviously proved that the proposed ARC-Fuzzy performed well in smooth groud surfaces compared to other approaches.展开更多
In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on obje...In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme.展开更多
An X-by-wire chassis can improve the kinematic characteristics of human-vehicle closed-loop system and thus active safety especially under emergency scenarios via enabling chassis coordinated control.This paper aims t...An X-by-wire chassis can improve the kinematic characteristics of human-vehicle closed-loop system and thus active safety especially under emergency scenarios via enabling chassis coordinated control.This paper aims to provide a complete and systematic survey on chassis coordinated control methods for full X-by-wire vehicles,with the primary goal of summarizing recent reserch advancements and stimulating innovative thoughts.Driving condition identification including driver’s operation intention,critical vehicle states and road adhesion condition and integrated control of X-by-wire chassis subsystems constitute the main framework of a chassis coordinated control scheme.Under steering and braking maneuvers,different driving condition identification methods are described in this paper.These are the trigger conditions and the basis for the implementation of chassis coordinated control.For the vehicles equipped with steering-by-wire,braking-by-wire and/or wire-controlled-suspension systems,state-of-the-art chassis coordinated control methods are reviewed including the coordination of any two or three chassis subsystems.Finally,the development trends are discussed.展开更多
Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utili...Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utilizing the reactive power capability of PV inverters to mitigate voltage deviations is being promoted.In recent years,droop control of inverter-based distributed energy resources has emerged as an essential tool for use in this study.The participation of PV systems in voltage regulation and its coordination with existing controllers,such as on-load tap changers,is paramount for controlling the voltage within specified limits.In this work,control strategies are presented that can be coordinated with the existing controls in a distributed manner.The effectiveness of the proposed method was demonstrated through simulation results on a distribution system.展开更多
Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot(GTR) w...Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot(GTR) was designed followed the end-effector principle, and an active partial body weight support(PBWS) system was introduced to facilitate successful gait training. For successful establishment of a walking gait on the GTR with PBWS, the motion laws of the GTR were planned to enable the phase distribution relationships of the cycle step, and the center of gravity(COG) trajectory of the human body during gait training on the GTR was measured. A coordinated control strategy was proposed based on the impedance control principle. A robotic prototype was developed as a platform for evaluating the design concepts and control strategies. Preliminary gait training with a healthy subject was implemented by the robotic-assisted gait training system and the experimental results are encouraging.展开更多
Hydraulic excavator is one type of the most widely applied construction equipment for various applications mainly because of its versatility and mobility. Among the tasks performed by a hydraulic excavator, repeatable...Hydraulic excavator is one type of the most widely applied construction equipment for various applications mainly because of its versatility and mobility. Among the tasks performed by a hydraulic excavator, repeatable level digging or flat surface finishing may take a large percentage. Using automated functions to perform such repeatable and tedious jobs will not only greatly increase the overall productivity but more importantly also improve the operation safety. For the purpose of investigating the technology without loss of generality, this research is conducted to create a coordinate control method for the boom, arm and bucket cylinders on a hydraulic excavator to perform accurate and effective works. On the basis of the kinematic analysis of the excavator linkage system, the tip trajectory of the end-effector can be determined in terms of three hydraulic cylinders coordinated motion with a visualized method. The coordination of those hydraulic cylinders is realized by controlling three electro-hydraulic proportional valves coordinately. Therefore, the complex control algorithm of a hydraulic excavator can be simplified into coordinated motion control of three individual systems. This coordinate control algorithm was validated on a wheeled hydraulic excavator, and the validation results indicated that this developed control method could satisfactorily accomplish the auto-digging function for level digging or flat surface finishing.展开更多
One-way roads have potential for improving vehicle speed and reducing traffic delay.Suffering from dense road network,most of adjacent intersections’distance on one-way roads becomes relatively close,which makes isol...One-way roads have potential for improving vehicle speed and reducing traffic delay.Suffering from dense road network,most of adjacent intersections’distance on one-way roads becomes relatively close,which makes isolated control of intersections inefficient in this scene.Thus,it is significant to develop coordinated control of multiple intersection signals on the one-way roads.This paper proposes a signal coordination control method that is suitable for one-way arterial roads.This method uses the cooperation technology of the vehicle infrastructure to collect intersection traffic information and share information among the intersections.Adaptive signal control system is adopted for each intersection in the coordination system,and the green light time is adjusted in real time based on the number of vehicles in queue.The offset and clearance time can be calculated according to the real-time traffic volume.The proposed method was verified with simulation results by VISSIM traffic simulation software.The results compared with other methods show that the coordinated control method proposed in this paper can effectively reduce the average delay of vehicles on the arterial roads and improve the traffic efficiency.展开更多
In this paper, the control problem of auxiliary power unit (APU) for hybrid electric vehicles is investigated. An adaptive controller is provided to achieve the coordinated control between the engine speed and the b...In this paper, the control problem of auxiliary power unit (APU) for hybrid electric vehicles is investigated. An adaptive controller is provided to achieve the coordinated control between the engine speed and the battery charging voltage. The proposed adaptive coordinated control laws for the throttle angle of the engine and the voltage of the power-converter can guarantee not only the asymptotic tracking performance of the engine speed and the regulation of the battery charging voltage, but also the robust stability of the closed loop system under external load changes. Simulation results are given to verify the performance of the proposed adaptive controller.展开更多
In this paper,we investigate a leader-following tracking problem for multi-agent systems with boundedinputs.We propose a distributed bounded protocol for each follower to track a leader whose states may not be complet...In this paper,we investigate a leader-following tracking problem for multi-agent systems with boundedinputs.We propose a distributed bounded protocol for each follower to track a leader whose states may not be completelymeasured.We theoretically prove that each agent can follow the leader with estimable track errors.Finally,somenumerical simulations are presented to illustrate our theoretical results.展开更多
An intelligent coordinated control strategy has been proposed and successfully applied to a 300MW boiler-turbine unit i. e. Unit 1 of Yuanbaoshan power plant in China. Load following operation of coal-fired boiler-tur...An intelligent coordinated control strategy has been proposed and successfully applied to a 300MW boiler-turbine unit i. e. Unit 1 of Yuanbaoshan power plant in China. Load following operation of coal-fired boiler-turbine unit in the power plant leads to changes in operating points which result in nonlinear variations of the plant variables and parameters. For the variation of operating condition and slowly varying dynamics, an intelligent control scheme has been developed by combining fuzzy self-tuning with adaptive control and auto-tuning techniques. As there exist strong couplings between control loops of main steam pressure and power output in the unit, a new design for static decoupler aimed at decoupling for setpoints and unmeasured pulverized coal disturbance of the system at the same time is presented. Satisfactory industrial application results show that such a control system has enhanced adaptability and robustness to the complex process, and better control performance and high economic benefit have been obtained.展开更多
In unit steam-boiler generation, a coordinated control strategy is required to ensure a higher rate of load change without violating thermal constraints. The process is characterized by nonlinearity and uncertainty. W...In unit steam-boiler generation, a coordinated control strategy is required to ensure a higher rate of load change without violating thermal constraints. The process is characterized by nonlinearity and uncertainty. While neural networks can model highly complex nonlinear dynamical systems, they produce black box models. This has led to significant interest in neuro-fuzzy networks (NFNs) to represent a nonlinear dynamical process by a set of locally valid and simpler submodels. Two alternative methods of exploiting the NFNs within a generalised predictive control (GPC) framework for nonlinear model predictive control are described. Coordinated control of steam-boiler generation using the two nonlinear GPC methods show excellent tracking and disturbance rejection results and improved performance compared with conventional linear GPC.展开更多
Coordinated controller tuning of the boiler turbine unit is a challenging task due to the nonlinear and coupling characteristics of the system.In this paper,a new variant of binary particle swarm optimization (PSO) ...Coordinated controller tuning of the boiler turbine unit is a challenging task due to the nonlinear and coupling characteristics of the system.In this paper,a new variant of binary particle swarm optimization (PSO) algorithm,called probability based binary PSO (PBPSO),is presented to tune the parameters of a coordinated controller.The simulation results show that PBPSO can effectively optimize the control parameters and achieves better control performance than those based on standard discrete binary PSO,modified binary PSO,and standard continuous PSO.展开更多
In order to improve the frequency response and anti-interference characteristics of the smart electromechanical actuator(EMA)system,and aiming at the force fighting problem when multiple actuators work synchronously,a...In order to improve the frequency response and anti-interference characteristics of the smart electromechanical actuator(EMA)system,and aiming at the force fighting problem when multiple actuators work synchronously,a multi input multi output(MIMO)position difference cross coupling control coordinated strategy based on double‑closed-loop load feedforward control is proposed and designed.In this strategy,the singular value method of return difference matrix is used to design the parameter range that meets the requirements of system stability margin,and the sensitivity function and the H_(∞)norm theory are used to design and determine the optimal solution in the obtained parameter stability region,so that the multi actuator system has excellent synchronization,stability and anti-interference.At the same time,the mathematical model of the integrated smart EMA system is established.According to the requirements of point-to-point control,the controller of double-loop control and load feedforward compensation is determined and designed to improve the frequency response and anti-interference ability of single actuator.Finally,the 270 V high-voltage smart EMA system experimental platform is built,and the frequency response,load feedforward compensation and coordinated control experiments are carried out to verify the correctness of the position difference cross coupling control strategy and the rationality of the parameter design,so that the system can reach the servo control indexes of bandwidth 6 Hz,the maximum output force 20000 N and the synchronization error≤0.1 mm,which effectively solves the problem of force fighting.展开更多
In continuous wave CO2 laser-TlG hybrid welding process, the laser energy is not fully utilized because of the absorption and defocusing by plasma in the arc space. Therefore, the optimal welding result can only be ac...In continuous wave CO2 laser-TlG hybrid welding process, the laser energy is not fully utilized because of the absorption and defocusing by plasma in the arc space. Therefore, the optimal welding result can only be achieved in a limited energy range. In order to improve the welding performance further, a novel hybrid welding method--pulse CO2 laser-TIG arc hybrid welding by coordinated control is proposed and investigated. The experimental results indicate that, compared with continuous wave CO2 laser-TIG hybrid welding, the absorption and defocusing of laser energy by plasma are decreased further, and at the same time, the availability ratio of laser and arc energy can be increased when a coordinated frequency is controlled. As a result, the weld appearance is also improved as well as the weld depth is deepened. Furthermore, the effect of frequency and phase of pulse laser and TIG arc on the arc images and welding characteristics is also studied. However, the novel hybrid method has great potentials in the application of industrials from views of techniques and economy.展开更多
To solve the problem of attitude synchronization control for spacecraft formation flying(SFF)suffering from external disturbances under a directed communication topology,a sliding mode disturbance observer(SMDO)based ...To solve the problem of attitude synchronization control for spacecraft formation flying(SFF)suffering from external disturbances under a directed communication topology,a sliding mode disturbance observer(SMDO)based on the finite-time control strategy is developed to observe the time-varying external disturbance via estimating the upper bound of its first derivative.Meanwhile,the rotation matrix is employed to describe the attitude of SFF for the purpose of the avoidance of singularity and unwinding phenomenon.As for the attitude synchronization and the tracking control architecture,a sliding mode surface(SMS)is given such that the control objective can be achieved.The effectiveness and the validity of the proposed method are elaborated via theoretical analysis and numerical simulations.展开更多
In order to compromise the conflicts between control accuracy and system efficiency of conventional electro-hydraulic servo systems,a novel pump-valve coordinated electro-hydraulic servo system was designed and a corr...In order to compromise the conflicts between control accuracy and system efficiency of conventional electro-hydraulic servo systems,a novel pump-valve coordinated electro-hydraulic servo system was designed and a corresponding control strategy was proposed.The system was constituted of a pumpcontrolled part and a valve-controlled part,the pump controlled part is used to adjust the flow rate of oil source and the valve controlled part is used to complete the position tracking control of the hydraulic cylinder.Based on the system characteristics,a load flow grey prediction method was adopted in the pump controlled part to reduce the system overflow losses,and an adaptive robust control method was adopted in the valve controlled part to eliminate the effect of system nonlinearity and parametric uncertainties due to variable hydraulic parameters and system loads on the control precision.The experimental results validated that the adopted control strategy increased the system efficiency obviously with guaranteed high control accuracy.展开更多
With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper stu...With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper studies the tracking control problem of networked multi-agent systems with communication constraints,where each agent has no information on the dynamics of other agents except their outputs.A networked predictive proportional integral derivative(PPID)tracking scheme is proposed to achieve the desired tracking performance,compensate actively for communication delays,and simplify implementation in a distributed manner.This scheme combines the past,present and predictive information of neighbour agents to form a tracking error signal for each agent,and applies the proportional,integral,and derivative of the agent tracking error signal to control each individual agent.The criteria of the stability and output tracking consensus of multi-agent systems with the networked PPID tracking scheme are derived through detailed analysis on the closed-loop systems.The effectiveness of the networked PPID tracking scheme is illustrated via an example.展开更多
基金Supported by National Key R&D Plan of China(Grant No.2016YFC0301100)National Natural Science Foundation of China(Grant Nos.51475319,51575736,41527901)Aoshan Talents Program of Qingdao National Laboratory for Marine Science and Technology,China
文摘The formation of hybrid underwater gliders has advantages in sustained ocean observation with high resolution and more adaptation for complicated ocean tasks. However, the current work mostly focused on the traditional gliders and AUVs.The research on control strategy and energy consumption minimization for the hybrid gliders is necessary both in methodology and experiment. A multi-layer coordinate control strategy is developed for the fleet of hybrid underwater gliders to control the gliders’ motion and formation geometry with optimized energy consumption. The inner layer integrated in the onboard controller and the outer layer integrated in the ground control center or the deck controller are designed. A coordinate control model is proposed based on multibody theory through adoption of artificial potential fields. Considering the existence of ocean flow, a hybrid motion energy consumption model is constructed and an optimization method is designed to obtain the heading angle, net buoyancy, gliding angle and the rotate speed of screw propeller to minimize the motion energy with consideration of the ocean flow. The feasibility of the coordinate control system and motion optimization method has been verified both by simulation and sea trials. Simulation results show the regularity of energy consumption with the control variables. The fleet of three Petrel-Ⅱ gliders developed by Tianjin University is deployed in the South China Sea. The trajectory error of each glider is less than 2.5 km, the formation shape error between each glider is less than 2 km, and the difference between actual energy consumption and the simulated energy consumption is less than 24% actual energy. The results of simulation and the sea trial prove the feasibility of the proposed coordinate control strategy and energy optimization method. In conclusion, a coordinate control system and a motion optimization method is studied, which can be used for reference in theoretical research and practical fleet operation for both the traditional gliders and hybrid gliders.
基金This work was supported by the Natural Science Fund of China,grant number 50375054.
文摘In the three-wire welding system, a welding process consists of the operations of four devices, namely three welding machines and one bogie. The operations need to be synchronized by a numerical coordinate controller ( NCC ). In this paper, we will discuss a tnsk-job-procedure cubic program structure. Under this structure, the devices are synchronized and isolated at the same time. This cubic program structure can also be used as a reference for other multi-device or multi-unit manufacturing processes.
文摘A novel initiative mating device, which has four 2-degree manipulators around the mating skirt, is proposed to mate between a skirt of AUV (autonomons underwater vehicle) and a disabled submarine. The primary function of the device is to keep exact mating between skirt and disabled submarine in a badly sub sea environment. According to the characteristic of rescue, an automaton model is brought forward to describe the mating proceed between AUV and manipulators. The coordinated control is implemented by the TDES (time discrete event system). After taking into account the time problem, it is a useful method to control mating by sinmlation testing. The result shows that it reduces about 70 seconds after using intelligent co-ordinate control based on TDES through the whole mating procedure.
文摘Four-wheeled,individual-driven,nonholonomic structured mobile robots are widely used in industries for automated work,inspection and explora-tion purposes.The trajectory tracking control of the four-wheel individual-driven mobile robot is one of the most blooming research topics due to its nonholonomic structure.The wheel velocities are separately adjusted to follow the trajectory in the old-fashioned kinematic control of skid-steered mobile robots.However,there is no consideration for robot dynamics when using a kinematic controller that solely addresses the robot chassis’s motion.As a result,the mobile robot has lim-ited performance,such as chattering during curved movement.In this research work,a three-tiered adaptive robust control with fuzzy parameter estimation,including dynamic modeling,direct torque control and wheel slip control is pro-posed.Fuzzy logic-based parameter estimation is a valuable tool for adjusting adaptive robust controller(ARC)parameters and tracking the trajectories with less tracking error as well as high tracking accuracy.This research considers the O type and 8 type trajectories for performance analysis of the proposed novel control technique.Our suggested approach outperforms the existing control methods such as Fuzzy,proportional–integral–derivative(PID)and adaptive robust controller with discrete projection(ARC–DP).The experimental results show that the scheduled performance index decreases by 2.77%and 4.76%.All the experimen-tal simulations obviously proved that the proposed ARC-Fuzzy performed well in smooth groud surfaces compared to other approaches.
文摘In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme.
基金Supported in part by Ministry of Science and Technology of the People’s Republic of China(Grant No.2017YFB0103600)Beijing Municipal Science and Technology Commission via the Beijing Nova Program(Grant No.Z201100006820007).
文摘An X-by-wire chassis can improve the kinematic characteristics of human-vehicle closed-loop system and thus active safety especially under emergency scenarios via enabling chassis coordinated control.This paper aims to provide a complete and systematic survey on chassis coordinated control methods for full X-by-wire vehicles,with the primary goal of summarizing recent reserch advancements and stimulating innovative thoughts.Driving condition identification including driver’s operation intention,critical vehicle states and road adhesion condition and integrated control of X-by-wire chassis subsystems constitute the main framework of a chassis coordinated control scheme.Under steering and braking maneuvers,different driving condition identification methods are described in this paper.These are the trigger conditions and the basis for the implementation of chassis coordinated control.For the vehicles equipped with steering-by-wire,braking-by-wire and/or wire-controlled-suspension systems,state-of-the-art chassis coordinated control methods are reviewed including the coordination of any two or three chassis subsystems.Finally,the development trends are discussed.
基金by a project under the scheme entitled“Developing Policies&Adaptation Strategies to Climate Change in the Baltic Sea Region”(ASTRA),Project No.ASTRA6-4(2014-2020.4.01.16-0032).
文摘Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utilizing the reactive power capability of PV inverters to mitigate voltage deviations is being promoted.In recent years,droop control of inverter-based distributed energy resources has emerged as an essential tool for use in this study.The participation of PV systems in voltage regulation and its coordination with existing controllers,such as on-load tap changers,is paramount for controlling the voltage within specified limits.In this work,control strategies are presented that can be coordinated with the existing controls in a distributed manner.The effectiveness of the proposed method was demonstrated through simulation results on a distribution system.
基金Project(61175128) supported by the National Natural Science Foundation of ChinaProject(2008AA040203) supported by the National High Technology Research and Development Program of China
文摘Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot(GTR) was designed followed the end-effector principle, and an active partial body weight support(PBWS) system was introduced to facilitate successful gait training. For successful establishment of a walking gait on the GTR with PBWS, the motion laws of the GTR were planned to enable the phase distribution relationships of the cycle step, and the center of gravity(COG) trajectory of the human body during gait training on the GTR was measured. A coordinated control strategy was proposed based on the impedance control principle. A robotic prototype was developed as a platform for evaluating the design concepts and control strategies. Preliminary gait training with a healthy subject was implemented by the robotic-assisted gait training system and the experimental results are encouraging.
基金supported by National Natural Science Foundation of China (Grant No. 50875228)
文摘Hydraulic excavator is one type of the most widely applied construction equipment for various applications mainly because of its versatility and mobility. Among the tasks performed by a hydraulic excavator, repeatable level digging or flat surface finishing may take a large percentage. Using automated functions to perform such repeatable and tedious jobs will not only greatly increase the overall productivity but more importantly also improve the operation safety. For the purpose of investigating the technology without loss of generality, this research is conducted to create a coordinate control method for the boom, arm and bucket cylinders on a hydraulic excavator to perform accurate and effective works. On the basis of the kinematic analysis of the excavator linkage system, the tip trajectory of the end-effector can be determined in terms of three hydraulic cylinders coordinated motion with a visualized method. The coordination of those hydraulic cylinders is realized by controlling three electro-hydraulic proportional valves coordinately. Therefore, the complex control algorithm of a hydraulic excavator can be simplified into coordinated motion control of three individual systems. This coordinate control algorithm was validated on a wheeled hydraulic excavator, and the validation results indicated that this developed control method could satisfactorily accomplish the auto-digging function for level digging or flat surface finishing.
基金Project(61503048)supported by the National Natural Science Foundation of ChinaProjects(16C0050,16C0062)supported by Scientific Research Project of Hunan Provincial Department of Education,China
文摘One-way roads have potential for improving vehicle speed and reducing traffic delay.Suffering from dense road network,most of adjacent intersections’distance on one-way roads becomes relatively close,which makes isolated control of intersections inefficient in this scene.Thus,it is significant to develop coordinated control of multiple intersection signals on the one-way roads.This paper proposes a signal coordination control method that is suitable for one-way arterial roads.This method uses the cooperation technology of the vehicle infrastructure to collect intersection traffic information and share information among the intersections.Adaptive signal control system is adopted for each intersection in the coordination system,and the green light time is adjusted in real time based on the number of vehicles in queue.The offset and clearance time can be calculated according to the real-time traffic volume.The proposed method was verified with simulation results by VISSIM traffic simulation software.The results compared with other methods show that the coordinated control method proposed in this paper can effectively reduce the average delay of vehicles on the arterial roads and improve the traffic efficiency.
文摘In this paper, the control problem of auxiliary power unit (APU) for hybrid electric vehicles is investigated. An adaptive controller is provided to achieve the coordinated control between the engine speed and the battery charging voltage. The proposed adaptive coordinated control laws for the throttle angle of the engine and the voltage of the power-converter can guarantee not only the asymptotic tracking performance of the engine speed and the regulation of the battery charging voltage, but also the robust stability of the closed loop system under external load changes. Simulation results are given to verify the performance of the proposed adaptive controller.
基金Supported by the National Science Foundation of China under Grant Nos.10702023,10832006,and 60704041the Research Fund for the Doctoral Program of Higher Education under Grant No.20070487090
文摘In this paper,we investigate a leader-following tracking problem for multi-agent systems with boundedinputs.We propose a distributed bounded protocol for each follower to track a leader whose states may not be completelymeasured.We theoretically prove that each agent can follow the leader with estimable track errors.Finally,somenumerical simulations are presented to illustrate our theoretical results.
基金This project was supported by the National Nature Science Foundation of China( 60074004).
文摘An intelligent coordinated control strategy has been proposed and successfully applied to a 300MW boiler-turbine unit i. e. Unit 1 of Yuanbaoshan power plant in China. Load following operation of coal-fired boiler-turbine unit in the power plant leads to changes in operating points which result in nonlinear variations of the plant variables and parameters. For the variation of operating condition and slowly varying dynamics, an intelligent control scheme has been developed by combining fuzzy self-tuning with adaptive control and auto-tuning techniques. As there exist strong couplings between control loops of main steam pressure and power output in the unit, a new design for static decoupler aimed at decoupling for setpoints and unmeasured pulverized coal disturbance of the system at the same time is presented. Satisfactory industrial application results show that such a control system has enhanced adaptability and robustness to the complex process, and better control performance and high economic benefit have been obtained.
基金Supported by National Natural Science Foundation of P. R. China (69804003, 50576022)the Natural Science Foundation of Beijing (4062030)
文摘In unit steam-boiler generation, a coordinated control strategy is required to ensure a higher rate of load change without violating thermal constraints. The process is characterized by nonlinearity and uncertainty. While neural networks can model highly complex nonlinear dynamical systems, they produce black box models. This has led to significant interest in neuro-fuzzy networks (NFNs) to represent a nonlinear dynamical process by a set of locally valid and simpler submodels. Two alternative methods of exploiting the NFNs within a generalised predictive control (GPC) framework for nonlinear model predictive control are described. Coordinated control of steam-boiler generation using the two nonlinear GPC methods show excellent tracking and disturbance rejection results and improved performance compared with conventional linear GPC.
基金supported by Projects of Shanghai Science and Technology Community (No. 10ZR1411800,No. 08160705900,No. 08160512100)Shanghai University "the 11th Five-Year Plan"+1 种基金211 Construction ProjectMechatronics Engineering Innovation Group Project from Shanghai Education Commission
文摘Coordinated controller tuning of the boiler turbine unit is a challenging task due to the nonlinear and coupling characteristics of the system.In this paper,a new variant of binary particle swarm optimization (PSO) algorithm,called probability based binary PSO (PBPSO),is presented to tune the parameters of a coordinated controller.The simulation results show that PBPSO can effectively optimize the control parameters and achieves better control performance than those based on standard discrete binary PSO,modified binary PSO,and standard continuous PSO.
基金supported by the National Natural Science Foundation of China(No.52077100)the Aviation Science Foundation(No.201958052001)
文摘In order to improve the frequency response and anti-interference characteristics of the smart electromechanical actuator(EMA)system,and aiming at the force fighting problem when multiple actuators work synchronously,a multi input multi output(MIMO)position difference cross coupling control coordinated strategy based on double‑closed-loop load feedforward control is proposed and designed.In this strategy,the singular value method of return difference matrix is used to design the parameter range that meets the requirements of system stability margin,and the sensitivity function and the H_(∞)norm theory are used to design and determine the optimal solution in the obtained parameter stability region,so that the multi actuator system has excellent synchronization,stability and anti-interference.At the same time,the mathematical model of the integrated smart EMA system is established.According to the requirements of point-to-point control,the controller of double-loop control and load feedforward compensation is determined and designed to improve the frequency response and anti-interference ability of single actuator.Finally,the 270 V high-voltage smart EMA system experimental platform is built,and the frequency response,load feedforward compensation and coordinated control experiments are carried out to verify the correctness of the position difference cross coupling control strategy and the rationality of the parameter design,so that the system can reach the servo control indexes of bandwidth 6 Hz,the maximum output force 20000 N and the synchronization error≤0.1 mm,which effectively solves the problem of force fighting.
文摘In continuous wave CO2 laser-TlG hybrid welding process, the laser energy is not fully utilized because of the absorption and defocusing by plasma in the arc space. Therefore, the optimal welding result can only be achieved in a limited energy range. In order to improve the welding performance further, a novel hybrid welding method--pulse CO2 laser-TIG arc hybrid welding by coordinated control is proposed and investigated. The experimental results indicate that, compared with continuous wave CO2 laser-TIG hybrid welding, the absorption and defocusing of laser energy by plasma are decreased further, and at the same time, the availability ratio of laser and arc energy can be increased when a coordinated frequency is controlled. As a result, the weld appearance is also improved as well as the weld depth is deepened. Furthermore, the effect of frequency and phase of pulse laser and TIG arc on the arc images and welding characteristics is also studied. However, the novel hybrid method has great potentials in the application of industrials from views of techniques and economy.
基金This work was supported by the National Natural Science Foundation of China(11772185)the Natural Science Foundation of Heilongjiang Province(F2017005)the Fundamental Research Funds for the Central Universities(HEUCFP201770).
文摘To solve the problem of attitude synchronization control for spacecraft formation flying(SFF)suffering from external disturbances under a directed communication topology,a sliding mode disturbance observer(SMDO)based on the finite-time control strategy is developed to observe the time-varying external disturbance via estimating the upper bound of its first derivative.Meanwhile,the rotation matrix is employed to describe the attitude of SFF for the purpose of the avoidance of singularity and unwinding phenomenon.As for the attitude synchronization and the tracking control architecture,a sliding mode surface(SMS)is given such that the control objective can be achieved.The effectiveness and the validity of the proposed method are elaborated via theoretical analysis and numerical simulations.
基金Supported by Program for New Century Excellent Talents In University(NCET-12-0049)Beijing Natural Science Foundation(4132034)
文摘In order to compromise the conflicts between control accuracy and system efficiency of conventional electro-hydraulic servo systems,a novel pump-valve coordinated electro-hydraulic servo system was designed and a corresponding control strategy was proposed.The system was constituted of a pumpcontrolled part and a valve-controlled part,the pump controlled part is used to adjust the flow rate of oil source and the valve controlled part is used to complete the position tracking control of the hydraulic cylinder.Based on the system characteristics,a load flow grey prediction method was adopted in the pump controlled part to reduce the system overflow losses,and an adaptive robust control method was adopted in the valve controlled part to eliminate the effect of system nonlinearity and parametric uncertainties due to variable hydraulic parameters and system loads on the control precision.The experimental results validated that the adopted control strategy increased the system efficiency obviously with guaranteed high control accuracy.
文摘With the rapid development of network technology and control technology,a networked multi-agent control system is a key direction of modern industrial control systems,such as industrial Internet systems.This paper studies the tracking control problem of networked multi-agent systems with communication constraints,where each agent has no information on the dynamics of other agents except their outputs.A networked predictive proportional integral derivative(PPID)tracking scheme is proposed to achieve the desired tracking performance,compensate actively for communication delays,and simplify implementation in a distributed manner.This scheme combines the past,present and predictive information of neighbour agents to form a tracking error signal for each agent,and applies the proportional,integral,and derivative of the agent tracking error signal to control each individual agent.The criteria of the stability and output tracking consensus of multi-agent systems with the networked PPID tracking scheme are derived through detailed analysis on the closed-loop systems.The effectiveness of the networked PPID tracking scheme is illustrated via an example.