为了确定车辆在行驶过程中的相对位置与速度,提出一种基于双目序列图像的实时测距定位及自车速度估计方法。该方法利用车载双目视觉传感器采集周围环境的序列图像,并对同一时刻的左右图像进行基于SURF(speeded up robust features)特征...为了确定车辆在行驶过程中的相对位置与速度,提出一种基于双目序列图像的实时测距定位及自车速度估计方法。该方法利用车载双目视觉传感器采集周围环境的序列图像,并对同一时刻的左右图像进行基于SURF(speeded up robust features)特征的立体匹配,以获取环境特征点的景深,实现车辆测距定位;同时又对相邻两帧图像进行基于SURF特征的跟踪匹配,并通过对应匹配点在相邻两帧摄像机坐标系下的三维坐标,计算出摄像机坐标系在车辆运动前后的变换参数,根据变换参数估算出车辆的行驶速度。模拟实验表明,该方法具有良好的可行性,速度计算结果比较稳定,平均误差均在6%以内。展开更多
文摘为了确定车辆在行驶过程中的相对位置与速度,提出一种基于双目序列图像的实时测距定位及自车速度估计方法。该方法利用车载双目视觉传感器采集周围环境的序列图像,并对同一时刻的左右图像进行基于SURF(speeded up robust features)特征的立体匹配,以获取环境特征点的景深,实现车辆测距定位;同时又对相邻两帧图像进行基于SURF特征的跟踪匹配,并通过对应匹配点在相邻两帧摄像机坐标系下的三维坐标,计算出摄像机坐标系在车辆运动前后的变换参数,根据变换参数估算出车辆的行驶速度。模拟实验表明,该方法具有良好的可行性,速度计算结果比较稳定,平均误差均在6%以内。