The proper bandgap and exceptional photostability enable CsPbI_(3) as a potential candidate for indoor photovoltaics(IPVs),but indoor power conversion efficiency(PCE) is impeded by serious nonradiative recombination s...The proper bandgap and exceptional photostability enable CsPbI_(3) as a potential candidate for indoor photovoltaics(IPVs),but indoor power conversion efficiency(PCE) is impeded by serious nonradiative recombination stemming from challenges in incomplete DMAPbI_(3) conversion and lattice structure distortion.Here,the coplanar symmetric structu re of hexyl sulfide(HS) is employed to functionalize the CsPbI_(3) layer for fabricating highly efficient IPVs.The hydrogen bond between HS and DMAI promotes the conversion of DMAPbI_(3) to CsPbI_(3),while the copianar symmetric structure enhances crystalline order.Simultaneously,surface sulfidation during HS-induced growth results in the in situ formation of PbS,spontaneously creating a CsPbI_(3) N-P homojunction to enhance band alignment and carrier mobility.As a result,the CsPbI_(3)&HS devices achieve an impressive indoor PCE of 39.90%(P_(in):334.6 μW cm^(-2),P_(out):133.5 μW cm^(-2)) under LED@2968 K,1062 lux,and maintain over 90% initial PCE for 800 h at ^(3)0% air ambient humidity.展开更多
The skin effect is an electromagnetic phenomenon that makes the current flows only on the surface of the conductors at high frequency. This article is based on the phenomenon to model a structure made in coplanar tech...The skin effect is an electromagnetic phenomenon that makes the current flows only on the surface of the conductors at high frequency. This article is based on the phenomenon to model a structure made in coplanar technology. In reality, these types of structures integrated metal layers of different thickness of copper (9 μm, 18 μm, 35 μm, 70 μm). The neglect of this parameter introduces errors, sometimes significant, in the numerical calculations. This is why an iterative method (FWCIP) based on the wave concept was restated. Validation of results was carried out by comparison with those calculated by Ansoft HFSS software and Agilent ADS Technology. They show a good matching.展开更多
基金financial support from the Natural Science Foundation of Guizhou Province (Grant No. ZK 2024-087)Natural Science Foundation of China (no. 22005071)。
文摘The proper bandgap and exceptional photostability enable CsPbI_(3) as a potential candidate for indoor photovoltaics(IPVs),but indoor power conversion efficiency(PCE) is impeded by serious nonradiative recombination stemming from challenges in incomplete DMAPbI_(3) conversion and lattice structure distortion.Here,the coplanar symmetric structu re of hexyl sulfide(HS) is employed to functionalize the CsPbI_(3) layer for fabricating highly efficient IPVs.The hydrogen bond between HS and DMAI promotes the conversion of DMAPbI_(3) to CsPbI_(3),while the copianar symmetric structure enhances crystalline order.Simultaneously,surface sulfidation during HS-induced growth results in the in situ formation of PbS,spontaneously creating a CsPbI_(3) N-P homojunction to enhance band alignment and carrier mobility.As a result,the CsPbI_(3)&HS devices achieve an impressive indoor PCE of 39.90%(P_(in):334.6 μW cm^(-2),P_(out):133.5 μW cm^(-2)) under LED@2968 K,1062 lux,and maintain over 90% initial PCE for 800 h at ^(3)0% air ambient humidity.
文摘The skin effect is an electromagnetic phenomenon that makes the current flows only on the surface of the conductors at high frequency. This article is based on the phenomenon to model a structure made in coplanar technology. In reality, these types of structures integrated metal layers of different thickness of copper (9 μm, 18 μm, 35 μm, 70 μm). The neglect of this parameter introduces errors, sometimes significant, in the numerical calculations. This is why an iterative method (FWCIP) based on the wave concept was restated. Validation of results was carried out by comparison with those calculated by Ansoft HFSS software and Agilent ADS Technology. They show a good matching.