In this paper, the capabilities of grafting acrylonitrile (AN) onto starch initiated by Fe(III)-TU, V(V)-TU, Cr(VI)-TU, Mn(VII)-TU redox systems were compared in the presence of sulfuric acid of different concentratio...In this paper, the capabilities of grafting acrylonitrile (AN) onto starch initiated by Fe(III)-TU, V(V)-TU, Cr(VI)-TU, Mn(VII)-TU redox systems were compared in the presence of sulfuric acid of different concentrations. It was shown that the grafting capability of Mn(VII)-TU is the highest in these initiating systems. Using Mn (VII-TU as initiator, the effects of various acids (HClO4, H2SO4, HNO3, HCl) on the graft copolymerization of acrylonitrile onto starch were discussed, and the capabilities of graft copolymerization of methyl methacrylate (MMA), acrylamide (AM), acrylic acid (AA) onto starch were investigated. The experimental results show that the order of the influences of different acids is HClO4 > H2SO4 > HNO3 > HCl, and the order of grafting capabilities of different monomers grafted onto starch is MMA > AN > AM > AA. The structure and morphology of graft, copolymers were studied with infrared spectroscopy and scanning electron microscopy. The size, shape and roughness of surface of the grafted starch granules are changed after grafting.展开更多
The graft copolymerization of acrylic acid (AA) with unswollen and swollen ramie fibers using chromic acid (H 2CrO 4) as the initiator has been studied in the presence of air. The effects of initiator concentration,...The graft copolymerization of acrylic acid (AA) with unswollen and swollen ramie fibers using chromic acid (H 2CrO 4) as the initiator has been studied in the presence of air. The effects of initiator concentration, monomer concentration, perchloric acid (HClO 4) concentration, time of polymerization, reaction temperature, and amount of ramie fibers on the graft percentage have been found out. The graft copolymer was characterized by IR spectra, scanning electron microscopy(SEM), differential thermal analysis (DTA), and thermogravimertric analysis (TGA).展开更多
Phase partition of acrylonitrile in the vinylidene chloride/water system at different temperature and under pressure was studied. A calculation method for average VDC-AN copolymer composition with AN phase partition c...Phase partition of acrylonitrile in the vinylidene chloride/water system at different temperature and under pressure was studied. A calculation method for average VDC-AN copolymer composition with AN phase partition considered was proposed. The calculated results are in good agreement with the experimental data nearly the entire conversion range. VDC-AN copolymer with narrower composition distribution can be prepared in the suspension process and interpreted with dynamic equilibrium of AN between the oil and water phases continuously.展开更多
We investigated phase transitions in a diblock copolymer–homopolymer hybrid system blended with nanorods(NRs)by using the time-dependent Ginzburg–Landau theory.We systematically studied the effects of the number,len...We investigated phase transitions in a diblock copolymer–homopolymer hybrid system blended with nanorods(NRs)by using the time-dependent Ginzburg–Landau theory.We systematically studied the effects of the number,length and infiltration properties of the NRs on the self-assembly of the composites and the phase transitions occurring in the material.An analysis of the phase diagram was carried out to obtain the formation conditions of sea island structure nanorodbased aggregate,sea island structure nanorod-based dispersion,lamellar structure nanorod-based multilayer arrangement and nanowire structure.Further analysis of the evolution of the domain sizes and the distribution of the nanorod angle microphase structure was performed.Our simulation provides theoretical guidance for the preparation of ordered nanowire structures and a reference to improve the function of a polymer nanocomposite material.展开更多
The copolymerization of CO and styrene catalyzed by Pd/C toward the formation of polyketones (PK)was studied in the N-valeronitrile-N'-methylimidazolium hexafluorophosphate ([C4CNmim]+PF6-) medium. The synth...The copolymerization of CO and styrene catalyzed by Pd/C toward the formation of polyketones (PK)was studied in the N-valeronitrile-N'-methylimidazolium hexafluorophosphate ([C4CNmim]+PF6-) medium. The synthe-sized PK was characterized by Fourier transform infrared(FTIR), elemental analysis, 13C-nuclear magnetic resonance (13C-NMR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and gel permeation chro-matography (GPC). The supported ionic liquid film on the surface of Pd/C catalyst can prevent the products from covering the hole of active carbon due to its chemical stability and weak coordination ability with metal ions, and thus efficiently improve the catalytic activity. The effects of different amounts of ionic liquid on the catalytic activity and reusability of the catalyst and the molecular weight of PK were discussed. When the usage of ionic liquid is 10wt%(0.1 g ionic liquid/1 g active carbon carrier) and the theoretical content of Pd2+is 5wt%(0.05 g Pd2+/1 g active car-bon carrier), the highest catalytic activity 2 963.64 gSTCO/(gPd·h) is achieved with the molecular weight and polydispersity index of PK as Mn=9 684, Mw=13 452 and Mw/Mn=1.389.展开更多
The main objective of the present study is to develop a selfmicellizing solid dispersion(SMSD)system of cyclosporine A(CsA)using an amphiphilic copolymer,poly[MPC-co-BMA](pMB)to improve the biopharmaceutical propertie...The main objective of the present study is to develop a selfmicellizing solid dispersion(SMSD)system of cyclosporine A(CsA)using an amphiphilic copolymer,poly[MPC-co-BMA](pMB)to improve the biopharmaceutical properties of CsA(Fig.1A).Unlike conventional carrier compounds,pMB would perform the bifunctional ability as both polymeric carrier of solid dispersion system and solubilizer derived from a high micellizing property,which could be considered beneficial for the production of highly water soluble formulation of poorly water soluble compound[1].Improvement in the aqueous solubility has been believed to be a key consideration for acquiring potent pharmacological effects of BCS class II drug like CsA.展开更多
The triblock copolymer(PAA-b-PAN-b-PAA) iSs prepared by reversible addition-fragmentation chaintransfer polymerization,and then blended with polymer(PAN) and metal hydroxide(Ni(OH)2) as a precursor for heat-treatment....The triblock copolymer(PAA-b-PAN-b-PAA) iSs prepared by reversible addition-fragmentation chaintransfer polymerization,and then blended with polymer(PAN) and metal hydroxide(Ni(OH)2) as a precursor for heat-treatment.A composite material of hierarchical porous nanofibers and nickel oxide nanopa rticles(HPCF@NiO) is prepared by electrospinning combined with high-tempe rature carbonization.The effects of the ratio of PAA and PAA-b-PAN-b-PAA on the internal structure of nanofibers and their electrochemical properties as positive electrode materials are investigated.The experimental results show that when the ratio of PAA to PAA-b-PAN-b-PAA is 1.3 to 0.4,it has good pore structure and excellent electrochemical performance.At the current density of 1 A/g,the specific capacitance is 188.7 F/g and the potential window is -1 V to 0.37 V.The asymmetric supercapacitor assembled with activated carbon as the negative electrode materials has a specific capacitance of 21.2 F/g in 2 mol/L KOH and a capacitance retention of 85.7% after 12,500 cycles at different current density.展开更多
This paper reported the copolymerization results of butadiene and isoprene catalyzed by NdC_6H_6(AlCl_4)_3-AlR_3 system.The results show that the catalytic activity is dependent on the weight ratio of butadiene and is...This paper reported the copolymerization results of butadiene and isoprene catalyzed by NdC_6H_6(AlCl_4)_3-AlR_3 system.The results show that the catalytic activity is dependent on the weight ratio of butadiene and isoprene,the concentration of comonomers,the nature of alkylaluminium and the polymerization temperature as well.High contents of 1,4 microstructure of copolymer are obtained by the novel catalyst system.展开更多
Vapor-liquid equilibrium (VLE) data for copolymer solutions are necessary for several chemical processes. However, VLE data for copolymer solutions in the published report are rare. In this study, experimental VLE d...Vapor-liquid equilibrium (VLE) data for copolymer solutions are necessary for several chemical processes. However, VLE data for copolymer solutions in the published report are rare. In this study, experimental VLE data for binary systems copolymer+solvent were obtained using a gravimetric-sorption apparatus. The studied systems were hexane+poly (21% acrylonitrile-co-butadiene), hexane+poly (33% acrylonitrile-co-butadiene), hexane+poly (51% acrylonitrile-co-butadiene), hexane+poly (23% styrene-co-butadiene), hexane+poly (45% styrene-co-butadiene), and benzene+poly (44% styrene-co-methyl methacrylate) in the range 50-70℃. The experimental data were correlated with the UNIFAC and Elbro-FV group contribution models for the activity coefficient. Two sets of functional groups had been used to represent the monomers in copolymers: literature groups and new proposed groups. The mean deviations between experimental and calculated mass fractions about 2.4% with Elbro- FV and 13.3% with Zhong were observed when the groups proposed in this study were used, and of 3.5% for E1- bro-FV and 13.2% for Zhong, when literature grouns were used.展开更多
Grafting copolymerizations of methyl acrylate(MA) and ethyl acrylate(EA) onto corn starch, respectively, initiated by potassium persulfate-sodium thiosulphate (KPS-STS) redox system, were studied. The structures of po...Grafting copolymerizations of methyl acrylate(MA) and ethyl acrylate(EA) onto corn starch, respectively, initiated by potassium persulfate-sodium thiosulphate (KPS-STS) redox system, were studied. The structures of poly(MA)-g-starch and poly(EA)-g-starch were characterized by IR, SEM and X-ray diffraction. Experimental results show that KPS-STS is an efficient initiation system for grafting of MA and EA onto corn starch. The maximum percent grafting was obtained at [KPS] of 6.0× 10~3 mol/L, [STS] of 1.8× 10 5 mol/L, [M] of 6. 0× 101 mol/L, S:L=4:100 at 40℃ for 6 h. The reactivity order is MA>EA.展开更多
This study examines the issues in development of pharmacokinetic single compartment model for systems that obey free radical copolymerization kinetics. Copolymer composition as a function of reactivity ratios of comon...This study examines the issues in development of pharmacokinetic single compartment model for systems that obey free radical copolymerization kinetics. Copolymer composition as a function of reactivity ratios of comonomers for well mixed case was derived. For some cases, such as DEF-AN, diethyl fumarate and acrylonitrile system multiplicity in composition were found. The analysis is extended to n monomers. State space model expressions are used and the QSSA assumption is stated in state space equation form. Conditions when damped oscillations can be expected are noted. In addition to multiplicity in product composition, an account of reactivity ratios and other instances of multi- plicity were found during the pharmacodynamics of the free radical polymerization reactions. A careful study of initiated case, thermal case, 1 CSTR and 2 CSTRS was undertaken and results were presented. Numerical integration techniques were employed on the desktop computer. Steady state and transient state conversion for initiated case and thermal case for 1 CSTR and 2 CSTRs were calculated and plotted in Figures 7-9 and 12. No multiplicity was found in the thermal case for 1 CSTR in the dynamics of transient monomer conversion. Multiplicity was found in the initiated case for 1 CSTR in the dynamics of transient conversion of monomer. The multiplicity was found in the second CSTR for the case of 2 CSTRs in series. No multiplicity was found in the case of initiator decay.展开更多
Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cool...Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study.展开更多
Ethylene-vinyl acetate copolymer(EVA) as a kind of effective polymeric pour point depressant has been extensively used in the pipeline transportation of crude oil to inhibit wax deposition and improve the low temperat...Ethylene-vinyl acetate copolymer(EVA) as a kind of effective polymeric pour point depressant has been extensively used in the pipeline transportation of crude oil to inhibit wax deposition and improve the low temperature fluidity of crude oil. In this work, molecular dynamics simulations were performed to investigate the effect of EVA on wax-hydrate coexistence system to evaluate the application potentiality of EVA to the flow assurance of deep-sea oil-gas-water multiphase flow system. Our simulation results reveal that wax molecules gradually stretched and stacked from random coiling to a directional and ordered crystalline state during the process of wax solidification. The strong affinity of polar vinyl acetate side chains of EVA to neighboring water molecules made the EVA molecule prefer being in a curly state,which disrupted the ordered crystallization of surrounding wax molecules and delayed the solidification rate of wax cluster. In addition, it is found that EVA cocrystallized with wax molecules to form eutectic when the wax was fully solidified. The simulation results of hydrate nucleation and growth show that the EVA molecule displayed a two-sided effect on gas adsorption of wax crystals, which was the key factor that affected the nucleation and growth of hydrates in the methane-water system. The nonpolar hydrocarbon backbone of EVA increased the diffusion rate of methane and water, allowing more methane to diffuse to the surface of wax crystals, reducing the methane concentration in aqueous solutions and inhibiting the hydrate formation. On the other hand, the nonpolar vinyl acetate chains had a repulsive effect on methane, which reduced the adsorption area of methane on the eutectic surface and decreased the adsorption threshold value of the wax crystal. The excluded methane molecules would continue dissociating in the aqueous phase and participating in the nucleation and growth process of hydrates.Therefore, the probability of hydrate formation would be increased. It was worth noting that the inhibition performance of EVA on hydrate formation mainly played a significant role in the system with small wax crystal, while its hydrate promotion effect played a dominant role in the system with lager wax crystal. In summary, EVA could significantly inhibit both of the wax and hydrate deposition for the waxgas-water multiphase system with low wax content. When the wax content in the system was high, the role of EVA was mainly played in the alleviation of wax crystallization rather than the gas hydrates. The results of the present work can contribute to a better understanding of EVA on wax deposition and hydrate formation, and provide theoretical support of the potential industrial applications of EVA.展开更多
With the blooming development of electronic technology,the use of electron conductive gel or ionic conductive gel in preparing flexible electronic devices is drawing more and more attention.Deep eutectic solvents are ...With the blooming development of electronic technology,the use of electron conductive gel or ionic conductive gel in preparing flexible electronic devices is drawing more and more attention.Deep eutectic solvents are excellent substitutes for ionic liquids because of their good biocompatibility,low cost,and easy preparation,except for good conductivity.In this work,we synthesized a reactive quaternary ammonium monomer(3-acrylamidopropyl)octadecyldimethyl ammonium bromide with a hydrophobic chain of 18 carbons via the quaternization of 1-bromooctadecane and N-dimethylaminopropyl acrylamide at first,then we mixed quaternary ammonium with choline chloride,acrylic acid and glycerol to obtain a hydrophobic deep eutectic solvent,and initialized polymerization in UV light of 365 nm to obtain the ionic conductive eutectogel based on polyacrylamide copolymer with long hydrophobic chain.The obtained eutectogel exibits good stretchability(1200%),Young's modulus(0.185 MPa),toughness(4.2 MJ/m^(3)),conductivity(0.315 S/m).The eutectogel also shows desireable moisture resistance with the maximum water absorption of 11.7 wt%after one week at 25℃and 60%humidity,while the water absorption of eutectogel without hydrophobic long chains is 24.0 wt%.The introduction of long-chain hydrophobic groups not only improves the mechanical strength of the gels,but also significantly improves moisture resistance of the eutectogel.This work provides a simpler and more effective method for the preparation of ionic conductive eutectogels,which can further provide a reference for the applications of ionic conductive eutectogels in the field of flexible electronic devices.展开更多
Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacr...Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacrylamide materials.Two new drag reducers were synthesized from acrylamide(AM),sodium acrylate(Na AA)and a cationic modified monomer(AQAS1 or AQAS2)via aqueous solution polymerization,and the copolymers were named P(AM/Na AA/AQAS1)and P(AM/Na AA/AQAS2),respectively.The structures of the drag reduction agents were confirmed by IR and1H NMR spectroscopies.The molecular weight(Mw)of P(AM/Na AA/AQAS1)was 1.79×10^(6)g/mol.When the copolymer concentration was 1000 mg/L and the flow rate was 45 L/min,in fresh water the highest drag reduction rate was 75.8%,in 10,000 mg/L Na Cl solution the drag reduction rate decreased to 72.9%.The molecular weight of P(AM/Na AA/AQAS2)was 3.17×10^(6)g/mol.When the copolymer concentration was500 mg/L and the flow rate was 45 L/min,the drag reduction rate reached 75.2%,and in 10,000 mg/L Na Cl solution the drag reduction rate was 73.3%,decreased by approximately 1.9%.The drag reduction rate for partially hydrolyzed polyacrylamide(HPAM)was also investigated,and the results showed that the drag reduction rates for 500 and 1000 mg/L HPAM solutions were merely 43.2%and 49.0%in brine,respectively.Compared with HPAM,both of the above copolymers presented better drag reduction capacities.展开更多
We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field t...We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field theory and derive,in a non-parametric setting,the sensitivity of the dissimilarity between the desired and the actual morphologies to arbitrary perturbations in the guiding pattern shape.The sensitivity is then used for the optimization of the confining pattern shapes such that the dissimilarity between the desired and the actual morphologies is minimized.The efficiency and robustness of the proposed gradient-based algorithm are demonstrated in a number of examples related to templating vertical interconnect accesses(VIA).展开更多
Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copo...Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copolymers is fundamental to advancing polymer research and development. In this comprehensive review, we explore various preparation methods, including free radical, anionic, and cationic polymerization, utilized for synthesizing homopolymers and copolymers. Furthermore, we investigate solvent choices commonly employed for polymer characterization, ranging from neat conditions, polar protic and polar aprotic solvents. We also explored characterization techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), Atomic Force Microscopy (AFM), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA). In addition to industrial applications, we highlight the diverse biological applications of homopolymers, poly(2-hydroxyethyl methacrylate) (pHEMA) and polystyrene, which find its extensive use in biomedicine. By synthesizing and analyzing this wealth of information, this review aims to provide a comprehensive understanding of the synthesis, characterization, and applications of homopolymers and copolymers, with a particular focus on their biological applications. This holistic approach not only contributes to advancements in polymer science and technology but also fosters innovation in biomedicine, ultimately benefiting human health and well-being.展开更多
Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carbo...Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carboxylic group content of PMA-100 and the rate of complexation reaction were measured. Effects of the mass ratio of PMA-100 to Mn(II) (n), pH, background electrolyte, etc on the rejection rate (R) and permeate flux (J) were investigated. The results show that carboxylic group content of PMA-100 is 9.5 mmol/g. The complexation of Mn(II) with PMA-100 is rapid and completed within 5 min at pH 6.0. Both R and J increase with pH increasing in the range of 2.5-7.0, and R increases with the increase of n at pH 6.0 while J is little affected. The background electrolyte leads to the decrease of R, and CaCl2 has much greater effect on R than NaCl at the same ionic strength.展开更多
[Objective] The degradation properties of PBS-based copolymers and impacts on the growth of winter wheat were studied.[Method] Seeds of winter wheat were sown and cultivated in soil,and mixed with equal amounts of PBS...[Objective] The degradation properties of PBS-based copolymers and impacts on the growth of winter wheat were studied.[Method] Seeds of winter wheat were sown and cultivated in soil,and mixed with equal amounts of PBS,PBS-co-HS and PBS-co-BA,to investigate the degradation of polymers in soil and effects of the degradation intermediates and degradation products on seed germination and the growth of winter wheat during the continuous process of degradation.[Result] The results showed that the copolymers had better biodegradation properties than PBS in Lou Soil in Shaanxi Province under the same condition;polymer treatments had not affected the germination percentage and plant height of the winter wheat but contributed to the improvement of plant biomass.[Conclusion] These results suggested that the degradation and degradation products of PBS,PBS-co-HS and PBS-co-BA had not affected the growth of plants in soil environment for temporary.展开更多
The composition and sequence distribution of monomeric units in polyester polyether multiblock copolymer were studied by pyrolysis? gas chromatography (PGC) and pyrolysis gas chromatography/mass spectrometry (PGC/M...The composition and sequence distribution of monomeric units in polyester polyether multiblock copolymer were studied by pyrolysis? gas chromatography (PGC) and pyrolysis gas chromatography/mass spectrometry (PGC/MS). PGC was applied to study the F t curve of the multiblock copolymer and PGC/MS was used to separate and identify the pyrolyzates. DTA experiment was used to study the decomposition temperature. The results show that the beginning point of elastomer’s decomposition was about 300?℃ and the decomposition temperature of most of the sample was 550?℃. Many pyrolyzates were produced because of the breaking of weak bonds in the sample. The possible microstructure was verified and the pyrolysis pathway of the copolymer was investigated.展开更多
文摘In this paper, the capabilities of grafting acrylonitrile (AN) onto starch initiated by Fe(III)-TU, V(V)-TU, Cr(VI)-TU, Mn(VII)-TU redox systems were compared in the presence of sulfuric acid of different concentrations. It was shown that the grafting capability of Mn(VII)-TU is the highest in these initiating systems. Using Mn (VII-TU as initiator, the effects of various acids (HClO4, H2SO4, HNO3, HCl) on the graft copolymerization of acrylonitrile onto starch were discussed, and the capabilities of graft copolymerization of methyl methacrylate (MMA), acrylamide (AM), acrylic acid (AA) onto starch were investigated. The experimental results show that the order of the influences of different acids is HClO4 > H2SO4 > HNO3 > HCl, and the order of grafting capabilities of different monomers grafted onto starch is MMA > AN > AM > AA. The structure and morphology of graft, copolymers were studied with infrared spectroscopy and scanning electron microscopy. The size, shape and roughness of surface of the grafted starch granules are changed after grafting.
文摘The graft copolymerization of acrylic acid (AA) with unswollen and swollen ramie fibers using chromic acid (H 2CrO 4) as the initiator has been studied in the presence of air. The effects of initiator concentration, monomer concentration, perchloric acid (HClO 4) concentration, time of polymerization, reaction temperature, and amount of ramie fibers on the graft percentage have been found out. The graft copolymer was characterized by IR spectra, scanning electron microscopy(SEM), differential thermal analysis (DTA), and thermogravimertric analysis (TGA).
文摘Phase partition of acrylonitrile in the vinylidene chloride/water system at different temperature and under pressure was studied. A calculation method for average VDC-AN copolymer composition with AN phase partition considered was proposed. The calculated results are in good agreement with the experimental data nearly the entire conversion range. VDC-AN copolymer with narrower composition distribution can be prepared in the suspension process and interpreted with dynamic equilibrium of AN between the oil and water phases continuously.
基金Project supported by the National Natural Science Foundation of China(Grant No.21373131)the Provincial Natural Science Foundation of Shanxi,China(Grant No.2015011004)the Research Foundation for Excellent Talents of Shanxi Provincial Department of Human Resources and Social Security,China
文摘We investigated phase transitions in a diblock copolymer–homopolymer hybrid system blended with nanorods(NRs)by using the time-dependent Ginzburg–Landau theory.We systematically studied the effects of the number,length and infiltration properties of the NRs on the self-assembly of the composites and the phase transitions occurring in the material.An analysis of the phase diagram was carried out to obtain the formation conditions of sea island structure nanorodbased aggregate,sea island structure nanorod-based dispersion,lamellar structure nanorod-based multilayer arrangement and nanowire structure.Further analysis of the evolution of the domain sizes and the distribution of the nanorod angle microphase structure was performed.Our simulation provides theoretical guidance for the preparation of ordered nanowire structures and a reference to improve the function of a polymer nanocomposite material.
基金Supported by the Tianjin Natural Science Foundation(No.07JCYBJC00600)
文摘The copolymerization of CO and styrene catalyzed by Pd/C toward the formation of polyketones (PK)was studied in the N-valeronitrile-N'-methylimidazolium hexafluorophosphate ([C4CNmim]+PF6-) medium. The synthe-sized PK was characterized by Fourier transform infrared(FTIR), elemental analysis, 13C-nuclear magnetic resonance (13C-NMR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and gel permeation chro-matography (GPC). The supported ionic liquid film on the surface of Pd/C catalyst can prevent the products from covering the hole of active carbon due to its chemical stability and weak coordination ability with metal ions, and thus efficiently improve the catalytic activity. The effects of different amounts of ionic liquid on the catalytic activity and reusability of the catalyst and the molecular weight of PK were discussed. When the usage of ionic liquid is 10wt%(0.1 g ionic liquid/1 g active carbon carrier) and the theoretical content of Pd2+is 5wt%(0.05 g Pd2+/1 g active car-bon carrier), the highest catalytic activity 2 963.64 gSTCO/(gPd·h) is achieved with the molecular weight and polydispersity index of PK as Mn=9 684, Mw=13 452 and Mw/Mn=1.389.
文摘The main objective of the present study is to develop a selfmicellizing solid dispersion(SMSD)system of cyclosporine A(CsA)using an amphiphilic copolymer,poly[MPC-co-BMA](pMB)to improve the biopharmaceutical properties of CsA(Fig.1A).Unlike conventional carrier compounds,pMB would perform the bifunctional ability as both polymeric carrier of solid dispersion system and solubilizer derived from a high micellizing property,which could be considered beneficial for the production of highly water soluble formulation of poorly water soluble compound[1].Improvement in the aqueous solubility has been believed to be a key consideration for acquiring potent pharmacological effects of BCS class II drug like CsA.
基金partly supported by the National Natural Science Foundation of China(No.51763014)the Program for Hongliu Distinguished Young Scholars in Lanzhou University of Technology(No.J201801)Joint fund between Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals(No.18LHPY002)。
文摘The triblock copolymer(PAA-b-PAN-b-PAA) iSs prepared by reversible addition-fragmentation chaintransfer polymerization,and then blended with polymer(PAN) and metal hydroxide(Ni(OH)2) as a precursor for heat-treatment.A composite material of hierarchical porous nanofibers and nickel oxide nanopa rticles(HPCF@NiO) is prepared by electrospinning combined with high-tempe rature carbonization.The effects of the ratio of PAA and PAA-b-PAN-b-PAA on the internal structure of nanofibers and their electrochemical properties as positive electrode materials are investigated.The experimental results show that when the ratio of PAA to PAA-b-PAN-b-PAA is 1.3 to 0.4,it has good pore structure and excellent electrochemical performance.At the current density of 1 A/g,the specific capacitance is 188.7 F/g and the potential window is -1 V to 0.37 V.The asymmetric supercapacitor assembled with activated carbon as the negative electrode materials has a specific capacitance of 21.2 F/g in 2 mol/L KOH and a capacitance retention of 85.7% after 12,500 cycles at different current density.
基金Project supported partly by the National Natural Science Foundation of China
文摘This paper reported the copolymerization results of butadiene and isoprene catalyzed by NdC_6H_6(AlCl_4)_3-AlR_3 system.The results show that the catalytic activity is dependent on the weight ratio of butadiene and isoprene,the concentration of comonomers,the nature of alkylaluminium and the polymerization temperature as well.High contents of 1,4 microstructure of copolymer are obtained by the novel catalyst system.
基金Fundao de Amparo à Pesquisa do Estado de So Paulo(FAPESP)
文摘Vapor-liquid equilibrium (VLE) data for copolymer solutions are necessary for several chemical processes. However, VLE data for copolymer solutions in the published report are rare. In this study, experimental VLE data for binary systems copolymer+solvent were obtained using a gravimetric-sorption apparatus. The studied systems were hexane+poly (21% acrylonitrile-co-butadiene), hexane+poly (33% acrylonitrile-co-butadiene), hexane+poly (51% acrylonitrile-co-butadiene), hexane+poly (23% styrene-co-butadiene), hexane+poly (45% styrene-co-butadiene), and benzene+poly (44% styrene-co-methyl methacrylate) in the range 50-70℃. The experimental data were correlated with the UNIFAC and Elbro-FV group contribution models for the activity coefficient. Two sets of functional groups had been used to represent the monomers in copolymers: literature groups and new proposed groups. The mean deviations between experimental and calculated mass fractions about 2.4% with Elbro- FV and 13.3% with Zhong were observed when the groups proposed in this study were used, and of 3.5% for E1- bro-FV and 13.2% for Zhong, when literature grouns were used.
文摘Grafting copolymerizations of methyl acrylate(MA) and ethyl acrylate(EA) onto corn starch, respectively, initiated by potassium persulfate-sodium thiosulphate (KPS-STS) redox system, were studied. The structures of poly(MA)-g-starch and poly(EA)-g-starch were characterized by IR, SEM and X-ray diffraction. Experimental results show that KPS-STS is an efficient initiation system for grafting of MA and EA onto corn starch. The maximum percent grafting was obtained at [KPS] of 6.0× 10~3 mol/L, [STS] of 1.8× 10 5 mol/L, [M] of 6. 0× 101 mol/L, S:L=4:100 at 40℃ for 6 h. The reactivity order is MA>EA.
文摘This study examines the issues in development of pharmacokinetic single compartment model for systems that obey free radical copolymerization kinetics. Copolymer composition as a function of reactivity ratios of comonomers for well mixed case was derived. For some cases, such as DEF-AN, diethyl fumarate and acrylonitrile system multiplicity in composition were found. The analysis is extended to n monomers. State space model expressions are used and the QSSA assumption is stated in state space equation form. Conditions when damped oscillations can be expected are noted. In addition to multiplicity in product composition, an account of reactivity ratios and other instances of multi- plicity were found during the pharmacodynamics of the free radical polymerization reactions. A careful study of initiated case, thermal case, 1 CSTR and 2 CSTRS was undertaken and results were presented. Numerical integration techniques were employed on the desktop computer. Steady state and transient state conversion for initiated case and thermal case for 1 CSTR and 2 CSTRs were calculated and plotted in Figures 7-9 and 12. No multiplicity was found in the thermal case for 1 CSTR in the dynamics of transient monomer conversion. Multiplicity was found in the initiated case for 1 CSTR in the dynamics of transient conversion of monomer. The multiplicity was found in the second CSTR for the case of 2 CSTRs in series. No multiplicity was found in the case of initiator decay.
基金financially supported by a grant provided by Mitsubishi Heavy Industries。
文摘Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study.
基金financial support received from National Natural Science Foundation of China(22178378 and 22127812)"Tianchi Talent"Recruitment Program,Xinjiang Tianshan Innovation Team(2022TSYCTD0002)Xinjiang Uygur Region"One Case,One Policy"Strategic Talent Introduction Project(XQZX20240054)are gratefully acknowledged.
文摘Ethylene-vinyl acetate copolymer(EVA) as a kind of effective polymeric pour point depressant has been extensively used in the pipeline transportation of crude oil to inhibit wax deposition and improve the low temperature fluidity of crude oil. In this work, molecular dynamics simulations were performed to investigate the effect of EVA on wax-hydrate coexistence system to evaluate the application potentiality of EVA to the flow assurance of deep-sea oil-gas-water multiphase flow system. Our simulation results reveal that wax molecules gradually stretched and stacked from random coiling to a directional and ordered crystalline state during the process of wax solidification. The strong affinity of polar vinyl acetate side chains of EVA to neighboring water molecules made the EVA molecule prefer being in a curly state,which disrupted the ordered crystallization of surrounding wax molecules and delayed the solidification rate of wax cluster. In addition, it is found that EVA cocrystallized with wax molecules to form eutectic when the wax was fully solidified. The simulation results of hydrate nucleation and growth show that the EVA molecule displayed a two-sided effect on gas adsorption of wax crystals, which was the key factor that affected the nucleation and growth of hydrates in the methane-water system. The nonpolar hydrocarbon backbone of EVA increased the diffusion rate of methane and water, allowing more methane to diffuse to the surface of wax crystals, reducing the methane concentration in aqueous solutions and inhibiting the hydrate formation. On the other hand, the nonpolar vinyl acetate chains had a repulsive effect on methane, which reduced the adsorption area of methane on the eutectic surface and decreased the adsorption threshold value of the wax crystal. The excluded methane molecules would continue dissociating in the aqueous phase and participating in the nucleation and growth process of hydrates.Therefore, the probability of hydrate formation would be increased. It was worth noting that the inhibition performance of EVA on hydrate formation mainly played a significant role in the system with small wax crystal, while its hydrate promotion effect played a dominant role in the system with lager wax crystal. In summary, EVA could significantly inhibit both of the wax and hydrate deposition for the waxgas-water multiphase system with low wax content. When the wax content in the system was high, the role of EVA was mainly played in the alleviation of wax crystallization rather than the gas hydrates. The results of the present work can contribute to a better understanding of EVA on wax deposition and hydrate formation, and provide theoretical support of the potential industrial applications of EVA.
基金This work was supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2016ZX05016 and No.2016ZX05046).
文摘With the blooming development of electronic technology,the use of electron conductive gel or ionic conductive gel in preparing flexible electronic devices is drawing more and more attention.Deep eutectic solvents are excellent substitutes for ionic liquids because of their good biocompatibility,low cost,and easy preparation,except for good conductivity.In this work,we synthesized a reactive quaternary ammonium monomer(3-acrylamidopropyl)octadecyldimethyl ammonium bromide with a hydrophobic chain of 18 carbons via the quaternization of 1-bromooctadecane and N-dimethylaminopropyl acrylamide at first,then we mixed quaternary ammonium with choline chloride,acrylic acid and glycerol to obtain a hydrophobic deep eutectic solvent,and initialized polymerization in UV light of 365 nm to obtain the ionic conductive eutectogel based on polyacrylamide copolymer with long hydrophobic chain.The obtained eutectogel exibits good stretchability(1200%),Young's modulus(0.185 MPa),toughness(4.2 MJ/m^(3)),conductivity(0.315 S/m).The eutectogel also shows desireable moisture resistance with the maximum water absorption of 11.7 wt%after one week at 25℃and 60%humidity,while the water absorption of eutectogel without hydrophobic long chains is 24.0 wt%.The introduction of long-chain hydrophobic groups not only improves the mechanical strength of the gels,but also significantly improves moisture resistance of the eutectogel.This work provides a simpler and more effective method for the preparation of ionic conductive eutectogels,which can further provide a reference for the applications of ionic conductive eutectogels in the field of flexible electronic devices.
基金supported by the National Natural Science Foundation of China(Project Nos.51774062 and 52274032)Scientific and Technological Key Research Program of Chongqing Municipal Education Commission(KJZD-K201901502)+1 种基金General Project of Chongqing Natural Science Foundation(CSTB2022NSCQMSX0349)Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202313101)。
文摘Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacrylamide materials.Two new drag reducers were synthesized from acrylamide(AM),sodium acrylate(Na AA)and a cationic modified monomer(AQAS1 or AQAS2)via aqueous solution polymerization,and the copolymers were named P(AM/Na AA/AQAS1)and P(AM/Na AA/AQAS2),respectively.The structures of the drag reduction agents were confirmed by IR and1H NMR spectroscopies.The molecular weight(Mw)of P(AM/Na AA/AQAS1)was 1.79×10^(6)g/mol.When the copolymer concentration was 1000 mg/L and the flow rate was 45 L/min,in fresh water the highest drag reduction rate was 75.8%,in 10,000 mg/L Na Cl solution the drag reduction rate decreased to 72.9%.The molecular weight of P(AM/Na AA/AQAS2)was 3.17×10^(6)g/mol.When the copolymer concentration was500 mg/L and the flow rate was 45 L/min,the drag reduction rate reached 75.2%,and in 10,000 mg/L Na Cl solution the drag reduction rate was 73.3%,decreased by approximately 1.9%.The drag reduction rate for partially hydrolyzed polyacrylamide(HPAM)was also investigated,and the results showed that the drag reduction rates for 500 and 1000 mg/L HPAM solutions were merely 43.2%and 49.0%in brine,respectively.Compared with HPAM,both of the above copolymers presented better drag reduction capacities.
文摘We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field theory and derive,in a non-parametric setting,the sensitivity of the dissimilarity between the desired and the actual morphologies to arbitrary perturbations in the guiding pattern shape.The sensitivity is then used for the optimization of the confining pattern shapes such that the dissimilarity between the desired and the actual morphologies is minimized.The efficiency and robustness of the proposed gradient-based algorithm are demonstrated in a number of examples related to templating vertical interconnect accesses(VIA).
文摘Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copolymers is fundamental to advancing polymer research and development. In this comprehensive review, we explore various preparation methods, including free radical, anionic, and cationic polymerization, utilized for synthesizing homopolymers and copolymers. Furthermore, we investigate solvent choices commonly employed for polymer characterization, ranging from neat conditions, polar protic and polar aprotic solvents. We also explored characterization techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), Atomic Force Microscopy (AFM), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA). In addition to industrial applications, we highlight the diverse biological applications of homopolymers, poly(2-hydroxyethyl methacrylate) (pHEMA) and polystyrene, which find its extensive use in biomedicine. By synthesizing and analyzing this wealth of information, this review aims to provide a comprehensive understanding of the synthesis, characterization, and applications of homopolymers and copolymers, with a particular focus on their biological applications. This holistic approach not only contributes to advancements in polymer science and technology but also fosters innovation in biomedicine, ultimately benefiting human health and well-being.
基金Project (21176264) supported by the National Natural Science Foundation of ChinaProject (11JJ2010) supported by Hunan Provincial Natural Science Foundation of ChinaProject (LC13076) supported by Undergraduate Innovation Foundation of Central South University,China
文摘Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carboxylic group content of PMA-100 and the rate of complexation reaction were measured. Effects of the mass ratio of PMA-100 to Mn(II) (n), pH, background electrolyte, etc on the rejection rate (R) and permeate flux (J) were investigated. The results show that carboxylic group content of PMA-100 is 9.5 mmol/g. The complexation of Mn(II) with PMA-100 is rapid and completed within 5 min at pH 6.0. Both R and J increase with pH increasing in the range of 2.5-7.0, and R increases with the increase of n at pH 6.0 while J is little affected. The background electrolyte leads to the decrease of R, and CaCl2 has much greater effect on R than NaCl at the same ionic strength.
基金Supported by Key Innovation Program of Shaanxi Province(2009ZKC08-09)Industrial Education and Scientific Research Program of Shaanxi Province Education Department(2010JC01)Innovative Scientific Research Team Fund of Shaanxi University of Science & Technology(TD10-01)~~
文摘[Objective] The degradation properties of PBS-based copolymers and impacts on the growth of winter wheat were studied.[Method] Seeds of winter wheat were sown and cultivated in soil,and mixed with equal amounts of PBS,PBS-co-HS and PBS-co-BA,to investigate the degradation of polymers in soil and effects of the degradation intermediates and degradation products on seed germination and the growth of winter wheat during the continuous process of degradation.[Result] The results showed that the copolymers had better biodegradation properties than PBS in Lou Soil in Shaanxi Province under the same condition;polymer treatments had not affected the germination percentage and plant height of the winter wheat but contributed to the improvement of plant biomass.[Conclusion] These results suggested that the degradation and degradation products of PBS,PBS-co-HS and PBS-co-BA had not affected the growth of plants in soil environment for temporary.
文摘The composition and sequence distribution of monomeric units in polyester polyether multiblock copolymer were studied by pyrolysis? gas chromatography (PGC) and pyrolysis gas chromatography/mass spectrometry (PGC/MS). PGC was applied to study the F t curve of the multiblock copolymer and PGC/MS was used to separate and identify the pyrolyzates. DTA experiment was used to study the decomposition temperature. The results show that the beginning point of elastomer’s decomposition was about 300?℃ and the decomposition temperature of most of the sample was 550?℃. Many pyrolyzates were produced because of the breaking of weak bonds in the sample. The possible microstructure was verified and the pyrolysis pathway of the copolymer was investigated.