An aluminum/copper clad composite was fabricated by the casting-cold extrusion forming technology and the microstructures of the products were observed and analyzed.It is found that aluminum grains at the interface ar...An aluminum/copper clad composite was fabricated by the casting-cold extrusion forming technology and the microstructures of the products were observed and analyzed.It is found that aluminum grains at the interface are refined in the radial profiles of cone-shaped deformation zone,but the grains in the center maintain the original state and the grain size is non-uniform.A clear boundary presents between the refined area and center area.In contrast,the copper grains in the radial profiles have been significantly refined.In the center area of the copper,the grains are bigger than those at the boundary.On the surface of the deformable body,the grain size is the smallest,but with irregular grain morphology.After the product is entirely extruded,all the copper and aluminum grains are refined with small and uniform morphology.In the center area,the average diameter of aluminum grains is smaller than 5 μm,and the copper grain on the surface is about 10 μm.At the interface,the grain size is very small,with a good combination of copper and aluminum.The thickness of interface is in the range of 10-15 μm.Energy spectrum analysis shows that CuAl3 phase presents at the interface.展开更多
Copper cladding aluminum(CCA)rods with the section dimensions of12mm in diameter and2mm in sheath thickness were fabricated by vertical core-filling continuous casting(VCFC)technology.The kinds and morphology of inter...Copper cladding aluminum(CCA)rods with the section dimensions of12mm in diameter and2mm in sheath thickness were fabricated by vertical core-filling continuous casting(VCFC)technology.The kinds and morphology of interfacial intermetallic compounds(IMCs)were investigated by SEM,XRD and TEM.The results showed that the interfacial structure of Cu/Al was mainly composed of layeredγ1(Cu9Al4),cellularθ(CuAl2),andα(Al)+θ(CuAl2)phases.Moreover,residual acicularε2(Cu3Al2+x)phase was observed at the Cu/Al interface.By comparing the driving force of formation forε2(Cu3Al2+x)andγ1(Cu9Al4)phases,the conclusion was drawn that theε2(Cu3Al2+x)formed firstly at the Cu/Al interface.In addition,the interfacial formation mechanism of copper cladding aluminum composites was revealed completely.展开更多
The steady-state temperature field of horizontal core-filling continuous casting (HCFC) for producing copper cladding aluminum rods was simulated by finite element method to investigate the effects of key processing...The steady-state temperature field of horizontal core-filling continuous casting (HCFC) for producing copper cladding aluminum rods was simulated by finite element method to investigate the effects of key processing parameters on the positions of solid-liquid interfaces (SLIs) of copper and aluminum. It is found that mandrel tube length and mean withdrawing speed have significant effects on the SLI positions of both copper and aluminum. Aluminum casting temperature (TAI) (1003-1123 K) and secondary cooling water flux (600-900 L.h-1) have little effect on the SLI of copper but cause the SLI of aluminum to move 2-4 mm. When TA1 is in a range of 1043-1123 K, the liquid aluminum can fill continuously into the pre-solidified copper tube. Based on the numerical simulation, reasonable processing parameters were determined.展开更多
To provide theoretical basis and practical guidance for preparing composite rods by direct continuous casting, copper-clad aluminum composite rods of external copper layer diameter 12 mm and inner aluminum core diamet...To provide theoretical basis and practical guidance for preparing composite rods by direct continuous casting, copper-clad aluminum composite rods of external copper layer diameter 12 mm and inner aluminum core diameter 8 mm were manufactured. Orthogonal tests consisted of three factors and three levels were carried out to research the effects of melting copper temperature, continuous casting speed and nitrogen pressure on the performance of composite rods. Results showed that nitrogen pressure is the most important factor in influencing the surface quality; continuous casting speed is the most important factor in influencing copper & aluminum inter diffusion amount. Nitrogen pressure can noticeably improve the surface quality and make the rods easily be drawn out, but the surface quality does not show visible improvement when the nitrogen pressure is above 0.05 MPa. Measured by tests, the compound layer can be divided into three types according to its cladding layer degree: deficient cladding, normal cladding and excess cladding. The diameter of normal copper-clad aluminum composite rods can be successfully drawn less than 0.6 mm without annealing.展开更多
In order to realize automatic control of the width of weld pool, a visual sensor system for the width of weld pool detection is developed. By initiative arc light, the image of copper plate weld pool is taken back of ...In order to realize automatic control of the width of weld pool, a visual sensor system for the width of weld pool detection is developed. By initiative arc light, the image of copper plate weld pool is taken back of the torch through the process of weakening and filtering arc light. In order to decrease the time of processing video signals, analog circuit is applied in the processing where video signals is magnified, trimmed and processed into binary on the datum of dynamic average value, therefore the waveform of video signals of weld pool is obtained. The method that is used for detecting the width of weld pool is established. Results show that the vision sensing method for real-time detecting weld pool width to copper-clad aluminum wire TIG welding is feasible. The response cycle of this system is no more than 50 ms, and the testing precision is less than 0. 1 mm.展开更多
The laser cladding of Ni1015 alloy on Cu substrate was prepared by a high power continuous wave CO2 laser. Its microstructure was analyzed by optical microscope (OM), scanning electron microscope (SEM), and X-Ray ...The laser cladding of Ni1015 alloy on Cu substrate was prepared by a high power continuous wave CO2 laser. Its microstructure was analyzed by optical microscope (OM), scanning electron microscope (SEM), and X-Ray diffraction (XRD). The average microhardness of the cladding coating was Hv 280, which was almost three times of that of the Cu substrate (Hv 85). OM and SEM observations showed that the obtained coating had a smooth and uniform surface, as well as a metallurgical combination with the Cu substrate without cracks and pores at the interface. With the addition of copper into the nickel-based alloy, the differences of thermal expansion coefficient and melting point between the interlayer and cladding were reduced, which resulted in low stresses during rapid cooling. Moreover, large amount of (Cu, Ni) solid solution formed a metallurgical bonding between the cladding coating and the substrate, which also relaxed the stresses, leading to the reduction of interfacial cracks and pores after laser cladding.展开更多
Copper-clad aluminum (CCA) flat bars produced by the continuous casting-rolling process were subjected to continuous induction heating annealing (CIHA), and the effects of induction heating temperature and holding...Copper-clad aluminum (CCA) flat bars produced by the continuous casting-rolling process were subjected to continuous induction heating annealing (CIHA), and the effects of induction heating temperature and holding time on the microstructure, interface, and mechanical properties of the fiat bars were investigated. The results showed that complete recrystallization of the copper sheath occurred under CIHA at 460℃ for 5 s, 480℃ for 3 s, or 500℃ for 1 s and that the average grain size in the copper sheath was approximately 10.0 μm. In the case of specimens subjected to CIHA at 460-500℃ for longer than 1 s, complete recrystallization occurred in the aluminum core. In the case of CIHA at 460-500℃ for 1-5 s, a continuous interracial layer with a thickness of 2.5-5.5 μm formed and the thickness mainly increased with increasing annealing temperature. After CIHA, the interracial layer consisted primarily of a Cu9A14 layer and a CuA12 layer; the average interface shear strength of the CCA flat bars treated by CIHA at 460-500℃ for 1-5 s was 45-52 MPa. After full softening annealing, the hardness values of the copper sheath and the aluminum core were HV 65 and HV 24, respectively, and the hardness along the cross section of the CCA flat bar was uniform.展开更多
In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses o...In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid–solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation(LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.展开更多
Copper alloys suitable for laser cladding on cast iron are selected trom rune types of conventional powders. There are a poor spreading ability and porosity of copper alloy over the surface of castiron. Copper alloy s...Copper alloys suitable for laser cladding on cast iron are selected trom rune types of conventional powders. There are a poor spreading ability and porosity of copper alloy over the surface of castiron. Copper alloy surface is easily oxidized in atmosphere. These shortages have been overcome by ad- ding deoxidizers of Si and H_3BO_3. Laser parameters, stress and coefficient of friction have been ex- amined, and the larger smooth surface of Cu/cast iron for friction by laser cladding has been made for the application of the guide shoes of machine.展开更多
基金Project(60806006) supported by the National Natural Science Foundation of China
文摘An aluminum/copper clad composite was fabricated by the casting-cold extrusion forming technology and the microstructures of the products were observed and analyzed.It is found that aluminum grains at the interface are refined in the radial profiles of cone-shaped deformation zone,but the grains in the center maintain the original state and the grain size is non-uniform.A clear boundary presents between the refined area and center area.In contrast,the copper grains in the radial profiles have been significantly refined.In the center area of the copper,the grains are bigger than those at the boundary.On the surface of the deformable body,the grain size is the smallest,but with irregular grain morphology.After the product is entirely extruded,all the copper and aluminum grains are refined with small and uniform morphology.In the center area,the average diameter of aluminum grains is smaller than 5 μm,and the copper grain on the surface is about 10 μm.At the interface,the grain size is very small,with a good combination of copper and aluminum.The thickness of interface is in the range of 10-15 μm.Energy spectrum analysis shows that CuAl3 phase presents at the interface.
基金Project(51274038)supported by the National Natural Science Foundation of China
文摘Copper cladding aluminum(CCA)rods with the section dimensions of12mm in diameter and2mm in sheath thickness were fabricated by vertical core-filling continuous casting(VCFC)technology.The kinds and morphology of interfacial intermetallic compounds(IMCs)were investigated by SEM,XRD and TEM.The results showed that the interfacial structure of Cu/Al was mainly composed of layeredγ1(Cu9Al4),cellularθ(CuAl2),andα(Al)+θ(CuAl2)phases.Moreover,residual acicularε2(Cu3Al2+x)phase was observed at the Cu/Al interface.By comparing the driving force of formation forε2(Cu3Al2+x)andγ1(Cu9Al4)phases,the conclusion was drawn that theε2(Cu3Al2+x)formed firstly at the Cu/Al interface.In addition,the interfacial formation mechanism of copper cladding aluminum composites was revealed completely.
基金financially supported by the National High Technology Research and Development Program of China (No. 2013AA030706 and No. 2009AA03Z532)the Fundamental Research Funds for the Central Universities of China (No. FRF-TP-12-146A)
文摘The steady-state temperature field of horizontal core-filling continuous casting (HCFC) for producing copper cladding aluminum rods was simulated by finite element method to investigate the effects of key processing parameters on the positions of solid-liquid interfaces (SLIs) of copper and aluminum. It is found that mandrel tube length and mean withdrawing speed have significant effects on the SLI positions of both copper and aluminum. Aluminum casting temperature (TAI) (1003-1123 K) and secondary cooling water flux (600-900 L.h-1) have little effect on the SLI of copper but cause the SLI of aluminum to move 2-4 mm. When TA1 is in a range of 1043-1123 K, the liquid aluminum can fill continuously into the pre-solidified copper tube. Based on the numerical simulation, reasonable processing parameters were determined.
基金financially supported by the Program for New Century Excellent Talents in University(NCET-12-0849)the Fundamental Research Funds for the Central Universities(13ZD12)the National Natural Science Foundation of China(No.51006034)
文摘To provide theoretical basis and practical guidance for preparing composite rods by direct continuous casting, copper-clad aluminum composite rods of external copper layer diameter 12 mm and inner aluminum core diameter 8 mm were manufactured. Orthogonal tests consisted of three factors and three levels were carried out to research the effects of melting copper temperature, continuous casting speed and nitrogen pressure on the performance of composite rods. Results showed that nitrogen pressure is the most important factor in influencing the surface quality; continuous casting speed is the most important factor in influencing copper & aluminum inter diffusion amount. Nitrogen pressure can noticeably improve the surface quality and make the rods easily be drawn out, but the surface quality does not show visible improvement when the nitrogen pressure is above 0.05 MPa. Measured by tests, the compound layer can be divided into three types according to its cladding layer degree: deficient cladding, normal cladding and excess cladding. The diameter of normal copper-clad aluminum composite rods can be successfully drawn less than 0.6 mm without annealing.
文摘In order to realize automatic control of the width of weld pool, a visual sensor system for the width of weld pool detection is developed. By initiative arc light, the image of copper plate weld pool is taken back of the torch through the process of weakening and filtering arc light. In order to decrease the time of processing video signals, analog circuit is applied in the processing where video signals is magnified, trimmed and processed into binary on the datum of dynamic average value, therefore the waveform of video signals of weld pool is obtained. The method that is used for detecting the width of weld pool is established. Results show that the vision sensing method for real-time detecting weld pool width to copper-clad aluminum wire TIG welding is feasible. The response cycle of this system is no more than 50 ms, and the testing precision is less than 0. 1 mm.
基金This research was financially supported by the National Natural Science Foundation of China (No.50574020) and Shanghai BaoSteel Group Co.
文摘The laser cladding of Ni1015 alloy on Cu substrate was prepared by a high power continuous wave CO2 laser. Its microstructure was analyzed by optical microscope (OM), scanning electron microscope (SEM), and X-Ray diffraction (XRD). The average microhardness of the cladding coating was Hv 280, which was almost three times of that of the Cu substrate (Hv 85). OM and SEM observations showed that the obtained coating had a smooth and uniform surface, as well as a metallurgical combination with the Cu substrate without cracks and pores at the interface. With the addition of copper into the nickel-based alloy, the differences of thermal expansion coefficient and melting point between the interlayer and cladding were reduced, which resulted in low stresses during rapid cooling. Moreover, large amount of (Cu, Ni) solid solution formed a metallurgical bonding between the cladding coating and the substrate, which also relaxed the stresses, leading to the reduction of interfacial cracks and pores after laser cladding.
基金financial support from the National High-Tech Research and Development Program of China (No. 2013AA030706)Beijing Science and Technology Project (No. Z141100004214003)Yunnan Province Sciencial and Technology Cooperation Project (No. 2015IB012)
文摘Copper-clad aluminum (CCA) flat bars produced by the continuous casting-rolling process were subjected to continuous induction heating annealing (CIHA), and the effects of induction heating temperature and holding time on the microstructure, interface, and mechanical properties of the fiat bars were investigated. The results showed that complete recrystallization of the copper sheath occurred under CIHA at 460℃ for 5 s, 480℃ for 3 s, or 500℃ for 1 s and that the average grain size in the copper sheath was approximately 10.0 μm. In the case of specimens subjected to CIHA at 460-500℃ for longer than 1 s, complete recrystallization occurred in the aluminum core. In the case of CIHA at 460-500℃ for 1-5 s, a continuous interracial layer with a thickness of 2.5-5.5 μm formed and the thickness mainly increased with increasing annealing temperature. After CIHA, the interracial layer consisted primarily of a Cu9A14 layer and a CuA12 layer; the average interface shear strength of the CCA flat bars treated by CIHA at 460-500℃ for 1-5 s was 45-52 MPa. After full softening annealing, the hardness values of the copper sheath and the aluminum core were HV 65 and HV 24, respectively, and the hardness along the cross section of the CCA flat bar was uniform.
基金financially supported by the National Natural Science Foundation of China (No. 51575132)
文摘In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid–solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation(LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.
文摘Copper alloys suitable for laser cladding on cast iron are selected trom rune types of conventional powders. There are a poor spreading ability and porosity of copper alloy over the surface of castiron. Copper alloy surface is easily oxidized in atmosphere. These shortages have been overcome by ad- ding deoxidizers of Si and H_3BO_3. Laser parameters, stress and coefficient of friction have been ex- amined, and the larger smooth surface of Cu/cast iron for friction by laser cladding has been made for the application of the guide shoes of machine.