The peak fields of HT-7U TF/PF coils are designed at 5.8 T and 4.5 T, respectively. The superconducting (SC) NbTi/Cu strands for the coils have a quite low copper fraction (0.58). To increase the ratio of the limiting...The peak fields of HT-7U TF/PF coils are designed at 5.8 T and 4.5 T, respectively. The superconducting (SC) NbTi/Cu strands for the coils have a quite low copper fraction (0.58). To increase the ratio of the limiting current Vs. critical current for the cable in conduit conductor (CICC), the first-stage subcable consists of several copper strands twisted around a SC composite one. The copper strand diameter is different from the SC one. Based on Bottura's CICC design approach we take the product of total copper cross-section and wetted perimeter as one of the key design parameters to meet with stability margin requirement. The product reaches 114 cm3 for 15.5 kA TF CICC at operating temperature of 4.2 K and 139 cm3 for 15 kA PF CICC at 3.8 K to obtain stability margins of 280 and 700 mJ/cm3, respectively.展开更多
文摘The peak fields of HT-7U TF/PF coils are designed at 5.8 T and 4.5 T, respectively. The superconducting (SC) NbTi/Cu strands for the coils have a quite low copper fraction (0.58). To increase the ratio of the limiting current Vs. critical current for the cable in conduit conductor (CICC), the first-stage subcable consists of several copper strands twisted around a SC composite one. The copper strand diameter is different from the SC one. Based on Bottura's CICC design approach we take the product of total copper cross-section and wetted perimeter as one of the key design parameters to meet with stability margin requirement. The product reaches 114 cm3 for 15.5 kA TF CICC at operating temperature of 4.2 K and 139 cm3 for 15 kA PF CICC at 3.8 K to obtain stability margins of 280 and 700 mJ/cm3, respectively.