The preparation of granulated adsorption material of water-quenched slag/rectorite composite and the treatment of Cu ( Ⅱ )-containing copper smelter wastewater with the adsorption material were studied. The experim...The preparation of granulated adsorption material of water-quenched slag/rectorite composite and the treatment of Cu ( Ⅱ )-containing copper smelter wastewater with the adsorption material were studied. The experimental results showed that under the conditions with the mass ratio of water-quenched slag to rectorite of 1:1, 10% additive of industrial starch (IS), and 50% water, and a calcination temperature of 400 ℃, the granulated adsorption material prepared had a density of 1.06 kg/m^3, a porosity of 62.29%, water absorption rate of 58.82%, and compressive strength of 2.22 MPa. The efficiency of wastewater treatment was the best, whereas the rate of spallation loss was low. Under the conditions of natural pH, with the addition of the granulated adsorption material of 0.05 g/mL, a reaction time of 40 minutes, and temperature of 25 ℃, the efficiency of the granulated adsorption material for the removal of Cu ( Ⅱ ) ions from the copper smelter wastewater attained 98.2%, and the quality indexes of the wastewater after treatment conformed with the first level of integrated wastewater discharge standard (GB8978-1996). The reclamation of the used granulated adsorption material was carried out by de-sorption of the Cu ( Ⅱ) ions from the surface with 1 mol/L sodium chloride solution. The de-sorption rate was 96.4%, and the adsorption material can be reused many times to treat copper smelter wastewater.展开更多
The enrichment of copper from copper–cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components...The enrichment of copper from copper–cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper–cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.展开更多
Heterogeneous membranes were obtained by using styrene-acrylonitrile copolymer(SAN)blends with low content of ion-exchanger particles(5 wt.%). The membranes obtained by phase inversion were used for the removal of...Heterogeneous membranes were obtained by using styrene-acrylonitrile copolymer(SAN)blends with low content of ion-exchanger particles(5 wt.%). The membranes obtained by phase inversion were used for the removal of copper ions from synthetic wastewater solutions by electrodialytic separation. The electrodialysis was conducted in a three cell unit, without electrolyte recirculation. The process, under potentiostatic or galvanostatic control, was followed by p H and conductivity measurements in the solution. The electrodialytic performance,evaluated in terms of extraction removal degree(rd) of copper ions, was better under potentiostatic control then by the galvanostatic one and the highest(over 70%) was attained at8 V. The membrane efficiency at small ion-exchanger load was explained by the migration of resin particles toward the pores surface during the phase inversion. The prepared membranes were characterized by various techniques i.e. optical microscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis and differential thermal analysis and contact angle measurements.展开更多
Heavy metals and ammonia are difficult to remove from wastewater,as they easily combine into refractory complexes.The struvite formation method(SFM) was applied for the complex decomposition and simultaneous removal...Heavy metals and ammonia are difficult to remove from wastewater,as they easily combine into refractory complexes.The struvite formation method(SFM) was applied for the complex decomposition and simultaneous removal of heavy metal and ammonia.The results indicated that ammonia deprivation by SFM was the key factor leading to the decomposition of the copper-ammonia complex ion.Ammonia was separated from solution as crystalline struvite,and the copper mainly co-precipitated as copper hydroxide together with struvite.Hydrogen bonding and electrostatic attraction were considered to be the main surface interactions between struvite and copper hydroxide.Hydrogen bonding was concluded to be the key factor leading to the co-precipitation.In addition,incorporation of copper ions into the struvite crystal also occurred during the treatment process.展开更多
基金National"973"Plan Research Project(No.2004CB619204)Educational Ministry Scientific and Technological Research Key Project(No.02052)
文摘The preparation of granulated adsorption material of water-quenched slag/rectorite composite and the treatment of Cu ( Ⅱ )-containing copper smelter wastewater with the adsorption material were studied. The experimental results showed that under the conditions with the mass ratio of water-quenched slag to rectorite of 1:1, 10% additive of industrial starch (IS), and 50% water, and a calcination temperature of 400 ℃, the granulated adsorption material prepared had a density of 1.06 kg/m^3, a porosity of 62.29%, water absorption rate of 58.82%, and compressive strength of 2.22 MPa. The efficiency of wastewater treatment was the best, whereas the rate of spallation loss was low. Under the conditions of natural pH, with the addition of the granulated adsorption material of 0.05 g/mL, a reaction time of 40 minutes, and temperature of 25 ℃, the efficiency of the granulated adsorption material for the removal of Cu ( Ⅱ ) ions from the copper smelter wastewater attained 98.2%, and the quality indexes of the wastewater after treatment conformed with the first level of integrated wastewater discharge standard (GB8978-1996). The reclamation of the used granulated adsorption material was carried out by de-sorption of the Cu ( Ⅱ) ions from the surface with 1 mol/L sodium chloride solution. The de-sorption rate was 96.4%, and the adsorption material can be reused many times to treat copper smelter wastewater.
文摘The enrichment of copper from copper–cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper–cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.
文摘Heterogeneous membranes were obtained by using styrene-acrylonitrile copolymer(SAN)blends with low content of ion-exchanger particles(5 wt.%). The membranes obtained by phase inversion were used for the removal of copper ions from synthetic wastewater solutions by electrodialytic separation. The electrodialysis was conducted in a three cell unit, without electrolyte recirculation. The process, under potentiostatic or galvanostatic control, was followed by p H and conductivity measurements in the solution. The electrodialytic performance,evaluated in terms of extraction removal degree(rd) of copper ions, was better under potentiostatic control then by the galvanostatic one and the highest(over 70%) was attained at8 V. The membrane efficiency at small ion-exchanger load was explained by the migration of resin particles toward the pores surface during the phase inversion. The prepared membranes were characterized by various techniques i.e. optical microscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis and differential thermal analysis and contact angle measurements.
基金supported by the National Natural Science Foundation of China(No.51204213)the Key Project of Science and Technology of Hunan Province(No.2013WK2007)the Innovation Stimulating Program of Central South University(No.2015CX001)
文摘Heavy metals and ammonia are difficult to remove from wastewater,as they easily combine into refractory complexes.The struvite formation method(SFM) was applied for the complex decomposition and simultaneous removal of heavy metal and ammonia.The results indicated that ammonia deprivation by SFM was the key factor leading to the decomposition of the copper-ammonia complex ion.Ammonia was separated from solution as crystalline struvite,and the copper mainly co-precipitated as copper hydroxide together with struvite.Hydrogen bonding and electrostatic attraction were considered to be the main surface interactions between struvite and copper hydroxide.Hydrogen bonding was concluded to be the key factor leading to the co-precipitation.In addition,incorporation of copper ions into the struvite crystal also occurred during the treatment process.